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Abstract— Due to their limited ranges, electric vehicles (EVs)
need to be periodically charged during their long-distance
travels on a highway. Compared to the fossil-fuel powered
vehicles, the charging of a single EV takes much more time
(up to 30 mins versus 2 mins). As the number of EVs on
highways increases, adequate charging infrastructure needs to
be put in place. Nonetheless waiting times for EVs to get
charged at service stations could still vary significantly unless an
appropriate scheduling coordination is in place and individual
EVs make correct decisions about their choice of charging
locations. This paper attempts to address both the system-level
scheduling problem and the individual control problem, while
requiring only distributed information about EVs and their
charging at service stations along a highway. Specifically, we
first develop a higher-level distributed scheduling algorithm to
optimize the operation of the overall charging network. The
scheduling algorithm uses only local information of traffic flows
measured at the neighboring service stations (nodes), and it
aims at adjusting the percentage of the EVs to be charged
at individual stations so that all the charging resources along
the highway are well (uniformly) utilized and the total waiting
time is minimized. Then, a lower level cooperative control law is
designed for individual EVs to decide whether or not it should
charge its battery when approaching a specific service station by
meeting the published scheduling level while taking into account
its own battery constraint. Analytical designs are presented and
their performance improvement is illustrated using simulation.

I. INTRODUCTION

The electric vehicle (EV) technology has attracted much
interest in recent years. Compared to conventional fossil-
fuel power vehicles, EVs offer many benefits, such as high
energy efficiency, low greenhouse gas emissions, and energy
independence [1], [2]. From the consumers’ point of view,
two main issues related to the adoption of EVs are the long
charging times which may take from 30 mins to 8 hours [3],
and the limited driving range which may be 60 to 200 miles.
It is predicted that the number of EVs driven will be not less
than 3.1 million by 2020 [3]. The combination of increasing
number of EVs on the road and the long charging times
may have a significant impact on the total acceptable waiting
times for the customers to get their EVs charged.

Research effort on EVs’ charging has largely focused on
two main issues: (1) optimal placement of charging stations,
e.g. [4]–[6] and (2) development of EVs’ charging scheduling
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algorithm, e.g. [7]–[14]. This paper falls into the latter.
Specifically, we consider a scenario where a number of
EVs are on a highway with service stations at selected en-
trances/exits where drivers can charge their batteries. Clearly,
as the number of EVs increases, waiting times to get charged
at service stations could increase significantly. This becomes
more crucial if an appropriate scheduling algorithm and a
process by which individual EVs make correct decisions
about their charging locations do not exist. Some of these
problems have already been considered in the literature. A
stochastic balancing routing algorithm is proposed in [9] for
balancing the demand across a network for charging stations
and for reducing the potential for long queues at some
charging stations. The authors in [10] propose a scheduling
algorithm to minimize the lower bound of the waiting time
for EV charging in a large-scale road network by assuming
the presence of a central server which knows all information
about the road system, the electricity charging stations, and
the EVs. The authors in [12] consider an EV charging
control in a shopping center parking lot. A control algorithm
is proposed to balance the loss of life of the distribution
transformer for the facility and to maximize the quality of
charging service such as customer waiting time. EV charging
problem in shopping centers is also considered in [15] where
the authors analyze a lower bound of the probability that the
battery of EVs becomes empty on the road and the mean
of pure waiting time for the trip and show via simulations
that there is a trade-off between the probability and waiting
time. The work in [13] presents a charging-station selection
algorithm with a short waiting time based on local informa-
tion (the current position of the EV, the remaining battery
status, and its distance to the charging station) or global
information (queue lengths of the charging stations) on a
highway. Finally, the authors in [14] present an algorithm
for directing EVs to charging stations for balancing the load
among charging stations in an area while minimizing the EVs
charging time. It is assumed that vehicles can communicate
with the grid and a mathematical model based on queuing
theory is developed to handle requests for charging vehicles
at public charging station.

In this paper we develop algorithms for distributed real-
time scheduling and cooperative control for individual EVs
from a dynamical system’s perspective so that all the charg-
ing stations along the highway are well (uniformly) utilized
and the total waiting time minimized. The scheduling algo-
rithm uses local information of traffic flow from neighbor-
ing service stations, namely the previous and next service
stations and aims at adjusting the percentage of the EVs
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that need to be recharged at each station. The cooperative
control algorithm is designed for an individual EV by means
of infrastructure-to-vehicle and vehicle-to-vehicle wireless
communication to decide whether or not it should charge
its battery when approaching a specific service station by
meeting its schedule while taking into account its own battery
constraint.

The remainder of the paper is organized as follows. In
section II an average dynamic model of EV flow passing
through entrances/exits is described and the problem of
distributed scheduling for the overall transportation network
and a cooperative control for individual drivers to make
their decisions are presented. A consensus-based distributed
scheduling algorithm and distributed policy of decision
making for individual drivers are presented and analyzed
in section III and IV respectively. An illustrative example
is included in section V, and conclusions are drawn in
section VI.

II. MODELING & PROBLEM STATEMENT

Consider a highway (e.g., Florida Turnpike) along which
there are a number of entrances/exits. At selected en-
trances/exits, there are service stations where EV drivers can
charge their batteries. Due to their much-shorter ranges, EVs
need to be periodically charged during long-distance travels,
and hence both system-level scheduling and individual con-
trol algorithms should be designed properly.

In the remainder of this section, we first describe an
average dynamic model of EV flow passing through en-
trances/exits. Then, a queueing model is presented for the
average number of EVs at a given service station. Finally, the
decision variables are identified to formulate the problems
of designing algorithms for distributed scheduling for the
overall charging network and for cooperative control for
individual drivers to make their decisions.

A. An Average Model of Vehicle Flow

Fig. 1. A simple flow model of EVs at the ith extrance/exit

Consider the traffic flow in one direction and assume that
the highway has a total of N nodes (extrances/exits). Then,
a simple discrete time model of traffic flow is shown in
figure 1, that is, the vehicle flow continuing further at the
ith node and at time k is described by

yi(k) = gi(k) + [1− pi(k)] [yi−1(k − di−1) + γi(k)] , (1)

where yi(k) is the EV flow continuing their travel from node
i, di−1 denotes the average travel time (in unit increments)
from node (i−1) to node i, γi is the net average flow entering
node i from local roadways, pi(k) is the percentage of EVs
that enters the service station at node i, and gi(k) is the
EV flow out of the service station. If node i has no service
station, gi(k) = 0 and pi(k) = 0.

B. A Queueing Model for Service Stations

Let xi(k) ≥ 0 denote the number of EVs at the service
station of node i and at time k. Then, the vehicle flow on
the highway interacts with the state of the service station
according to

xi(k + 1) = xi(k) + fi(k)− gi(k), (2)
fi(k) = pi(k) [yi−1(k − di−1) + γi(k)] ,

where fi(k) is the average flow into the service station at
node i, and gi(k) is the average flow out of the service
station.
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Fig. 2. Queueing at the service station of node i

As shown in figure 2, an EV arrives entering the service
station will wait in a queue until a charging station becomes
available for it to get charged. It is assumed that, at the
service station of node i, there are ci EV chargers (which
always serve from the front of the queue) while the capacity
for the EVs to wait in the queue is sufficiently large. The
relationship among fi(k), gi(k) and xi(k) is modeled as an
M/M/ci queue: the EV arrives at service station i with the
mean rate of fi(k), state xi(k) evolves according to a Poisson
process, and charging times have an exponential distribution
with parameter µi (which is referred to as service rate). This
M/M/ci queue can be graphically represented by the birth-
death process illustrated by figure 3.
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Fig. 3. A state diagram of a birth-death process (M/M/ci queue)

C. A Simple Energy Model of EVs

Electricity consumption of the vth EV is modeled as

e−v,i+1 = e+v,i − dir
−
v , (3)

where e−v,i+1 denotes the battery status of the vth vehicle
when it approaches node (i + 1), e+v,i is its battery status



when it leaves node i, di is the average drive time from
node i to node (i + 1), and r−v is the battery consumption
rate of the v-th vehicle. When the vth EV leaves node i, its
battery status changes according to

e+v,i = uv,iev,max + (1− uv,i)e−v,i, (4)

where ev,max is the capacity of the vth vehicle’s battery, and
uv,i ∈ {0, 1} is the decision variable given by

uv,i(k) =

 1 if vehicle v decides to charge
at node i and time k

0 otherwise.
. (5)

Model (4) implies that an EV will be fully charged once it
decides to enter a service station.

D. Distributed Scheduling and Cooperative Control

The objective of this paper is twofold. First, we develop
a higher-level distributed scheduling algorithm to optimize
the operation of the overall transportation network. Second, a
lower level cooperative control is designed for individual EV
to decide whether it should charge its battery when approach-
ing a specific service station by meeting the scheduling
level while taking into account its own battery constraint
as illustrated in figure 4.

The scheduling algorithm uses local information of traffic
flow, specifically, the service station at node i and time k
only requires the information of yi−1(k−di−1), xi−1(k−1),
γi(k), xi(k− 1) and xi+1(k− 1). It aims at adjusting pi(k)
so that the average wait times at service stations reach a
consensus, because such a consensus reflects the objective of
optimizing charging services and highway operation so that
all the charging stations along the highway are uniformly
utilized and the total waiting time is minimized. Mathemat-
ically, the design can be represented as follows: find p∗i (k)
such that

pi(k) = p∗i (k) =⇒ xi(k)

ciµi
→ ξ0(k). (6)

As the stability issue to be investigated in section III-C, the
stability of the consensus value is ensured if the number of
EVs at any of the service stations does not keep growing.
At the steady state, this calls for the condition

ρi < ci, (7)

where ρi(k) = fi(k)/µi is the so-called utilization of those
chargers located at the service station of node i.

By the means of wireless communication, those EVs
approaching node i at time k can form neighboring set
Ni(k), and an EV from this set can interact with neighboring
EVs and the next service station (i.e., acquiring the informa-
tion of p∗i (k)) so that it can negotiate (based on its own
expected energy level) and determine which service station
is best for it to get charged with minimum waiting time.
Mathematically, this objective can be expressed as∑

v uv,i(k)

yi−1(k − di−1) + γi(k)
→ p∗i (k), (8)

schedulingscheduling

Fig. 4. Distributed scheduling and control of EVs’ charging

where p∗i is the current state of the consensus scheduling
algorithm. The combination of the two distributed algorithms
is (and will be shown) to improve performance of the overall
system.

III. DISTRIBUTED SCHEDULING ALGORITHM

In this section, we use the steady state solution of M/M/ci
queue to design a consensus law as the distributed scheduling
algorithm for flow dynamics in equations (1) and (2). Conver-
gence of consensus is shown, and stability of the consensus
value is also analyzed.

A. Steady State Solution of M/M/ci Queue

As in [10], [16], we model the charging service at the
ith service station as an M/M/ci queue. The model assumes
that EVs arrive at service station i according to a Poisson
process of mean arrival rate fi(k) and with an exponential
distribution of service rate µi. Specifically, an M/M/ci queue
is a stochastic process whose state space is the set ℵ =
{0, 1, 2, 3, · · · }, that is, it is a Markov process of
{xi(k) = l : l ∈ ℵ}, where xi(k) is the state variable
in equation (2). Let the steady-state solution be denoted as
ωi = [ωi,0, ωi,1, · · · ]T , where

ωi,l = lim
k→∞

Probability{xi(k) = l}.

The steady state solution satisfies constraint
∑∞
l=0 ωi,l = 1

and equation ωiQi = 0, where Qi is the transition matrix
given by

−fi fi
µi −(fi + µi) fi

. . .
ciµi −(fi + ciµi) fi

ciµi −(fi + ciµi) fi
. . .

 .

It is shown in [17] that the steady solution of xi(k) is given
by

xi =
ρci+1
i

cici!

1

(1− ρi/ci)2
ωi,0 + ρi,

ωi,0 =

[
ci−1∑
n=0

ρni
n!

+
ρcii

ci!(1− ρi/ci)

]−1
,

(9)

where ρi = fi/µi is the utilization of the chargers at service
station i.
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Fig. 5. Comparison between output function gi(xi) and its approximation
ĝi(xi): ci = 4 and µi = 2

It follows from (2) that, at the steady state, the output flow
from the service station is given by gi = fi. Therefore, we
have the following input-output relationship of equation (2)
and its M/M/c queue:

xi =
gci+1
i

µci+1
i cici!

1

(1− gi/µici)2
ωi,0 +

gi
µi
,

ωi,0 =

[
ci−1∑
n=0

gni
µni n!

+
gcii

µcii ci![1− gi/(µici)]

]−1
,

(10)

which is identical to the result from applying the pointwise
stationary approximation (PSA) method in [18], [19]. Should
ci = 1, the steady state solution reduces to

xi =
gi

µi − gi
=⇒ gi = µi

xi
1 + xi

. (11)

Solving gi(xi) from (10) is generally impossible except
for the simple case of ci = 1 which is shown in (11).
Nonetheless, for the purpose of deriving an analytical input-
output solution of gi(xi) (so that analytical design can be
proceeded in the next subsection), a single M/M/ci queue
can be approximately decoupled into ci M/M/1 queues and
hence the input-output solution gi(xi) to equation (10) can
be approximated by

ĝi(xi) = ciµi
xi

1 + xi
. (12)

In figure 5, solution (12) is compared to the numerical
solution to equation (10), and hence we know that solution
(12) is appropriate for analytical design and analysis.

B. Distributed Estimation Network of Total Charging Needs

For the purpose of collecting local information about
charging needs, it is assumed that, by the means of vehicle-
to-infrastructure communication [20], an EV entering the
highway at node i and at time t = kT will register itself and
hence be counted in γi(k). Then, the following distributed
observer is used to estimate the total charging needs: for

t ∈ [kT, (k + 1)T ),

ξ̇1 = κ
(
−ξ1 +

[
2ξ1
3 + ξ2

3

])
ξ̇i = κ

(
−ξi +

[
ξi−1

3 + ξi
3 + ξi+1

3

])
ξ̇N = κ

(
−ξ1 +

[
2ξN−1

3 + ξN
3

]) , (13)

where i = 2, · · · , (N − 1), κ is the controller gain,

ξi(kT ) = Nβiγi(k)

and βi is the average number of charging needed per vehicle
for those vehicles passing through node i and computed
based on information collected at node i such as their energy
levels in (3) and their distances to go. Observer (13) can be
expressed in the matrix form as

ξ̇ = κ(−I +D)ξ, (14)

where ξ = [ξ1 . . . ξN ]T , and matrix D given by

2
3

1
3

0 0 · · · 0
1
3

1
3

1
3

0 · · · 0

. . .
. . .

. . .
0 1

3
1
3

1
3

0

0 1
3

1
3

1
3

0 1
3

2
3


. (15)

The following lemma shows convergence of observer (13).
Lemma 1: For a given 0 < δ < 1 and choosing the gain

κ ≥ 4
λ2δT

where λ2 is the second smallest eigenvalue of
matrix (I − D), distributed observer (13) converges to the
following: for all i ∈ {1, · · · , N}

ξi(kT + δT )→
N∑
j=1

βjγj(k). (16)

Proof: The exponential decay rate of the observer (14)
is equal to κλ2. Furthermore, the settling time δT is given
by δT = 4(1/κλ2). Given that matrix D in (15) is row
stochastic, column stochastic and irreducible, and by choos-
ing the gain κ ≥ 4

λ2δT
for a pre-defined δ, it can then be

ensured [21] that observer (14) asymptotically converges to a
consensus as ξ(kT+δT )→ ao1, where 1 ∈ <n is the vector
of 1s and consensus value ao is given by ao = 1T ξ(kT )/N .

In the following subsection we present a distributed
scheduling algorithm to determine pi(k) for two different
cases depending on the value of ξi((k−1)T +δT ), which is
the estimation of the total charging needs of the EVs at the
previous time step, i.e.

∑N
j=1 γj(k − 1). Based on the esti-

mated total charging needs of the network, the infrastructure
determines the consensus value of the normalized queue at
the service stations, i.e., ξ0(k) in (6) for the two cases.

C. Distributed Algorithm of Scheduling at Service Stations

First, we consider the case that ξi((k−1)T +δT ) satisfies
the following condition

ξi((k − 1)T + δT ) <

N∑
j=1

cjµj . (17)



By the means of infrastructure-to-infrastructure communi-
cation, the service stations adjust pi(k) according to

p∗1(k) =
c1µ1

α1(k)

[
ξ0(k)

3
−

2z1(k)

3
+
z2(k)

3
+

c1µ1z1(k)

1 + c1µ1z1(k)

]
p∗i (k) =

ciµi

αi(k)

[
ξ0(k)

3
+
zi−1(k)

3
− zi(k) +

zi+1(k)

3
+

ciµizi(k)

1 + ciµizi(k)

]
p∗N (k) =

cNµN

αN (k)

[
ξ0(k)

3
−

2zN (k)

3
+
zN−1(k)

3
+

cNµNzN (k)

1 + cNµNzN (k)

]
(18)

where i = 2, · · · , (N − 1), α1(k) = γ1(k), and αj(k) =
yj−1(k − dj−1) + γj(k) for j = 2, · · · , N . In addition, the
value ξ0(k) ≥ 0 which acts as a leader is given by the
solution of

N∑
j=1

(cjµj)
2ξ0(k)

1 + cjµjξ0(k)
= ξi((k − 1)T + δT ). (19)

The following theorem shows that consensus (6) is guaran-
teed.

Theorem 1: Under distributed scheduling algorithm (18)
and if condition (17) is satisfied, all the charging stations
are asymptotically uniformly utilized, i.e., consensus (6) is
achieved and the queues at service stations are bounded as
k →∞.

Proof: Defining zi(k)
4
= xi(k)/ciµi and substituting

ĝi(xi) in (12) into (2) yield

zi(k + 1) = zi(k) +
fi(k)

ciµi
− ciµizi(k)

1 + ciµizi(k)
. (20)

Substituting (18) into (20) yields the closed-loop dynamics:

z(k + 1) = Dz(k) +
1

3
[ξ0(k)1− z(k)], (21)

where z = [z1 . . . zN ]T , 1 ∈ <n is the vector of 1s, and
matrix D given by (15) is primitive and row stochastic. It is
well known [21] that system (21) asymptotically converges
to a consensus as z(k)→ ξ0(k)1.

Next, we determine ξ0(k) to ensure that all the incoming
EVs will be charged, i.e., the following condition is satisfied:

N∑
j=1

fj(k) = ξi((k − 1)T + δT ) (22)

where fi(k) is defined in (2). Substituting (18) into (2) and
since zi(k)→ ξ0(k), we then have

fi(k)→
(ciµi)

2ξ0(k)

1 + ciµiξ0(k)
.

Substituting the above value of fi(k) into (22) gives us the
equation (19). Observe that

lim
ξ0(k)→∞

N∑
i=1

(ciµi)
2ξ0(k)

1 + ciµiξ0(k)
=

N∑
i=1

ciµi.

The solution ξ0(k) given by (19) always exists under con-
dition (17). Since limξ0(k)→∞ fi(k) = ciµi, we have that
fi(k) < ciµi and thus from (7) the queue at each service
stations, i.e. xi(k), is bounded.

Note that from (18) and since zi(k)→ ξ0(k), we have

p∗i →
(ciµi)

2ξ0(k)

αi(k) [1 + ciµiξ0(k)]
. (23)

Algorithm (18) can be implemented at the service stations
which have communication with neighboring stations. Note
that in reality, the driver decides him/herself whether or not
he/she wants to charge his/her electric vehicle at a specific
station. This stochastic nature of decision-making can be
modeled as a perturbation on dynamics (21) and as a result,
the states zi(k) may oscillate around ξ0(k).

Next, we consider the case where the estimated value
ξi((k − 1)T + δT ) satisfies

ξi((k − 1)T + δT ) ≥
N∑
j=1

cjµj . (24)

In other words, the estimated current total charging needs of
the EVs exceeds the total capacity of the charging stations.
We propose the following distributed scheduling algorithm
to adjust pi(k).

p∗1(k) =
c1µ1

α1(k)
ξ0(k)

p∗i (k) =
ciµi
αi(k)

{ξ0(k)− η [zi(k)− zi−1(k)]}
, (25)

where i = 2, · · · , N , η ∈ (0, 1), and

ξ0(k) =
ξi((k − 1)T + δT )∑N

j=1 cjµj
. (26)

The following theorem shows that consensus (6) is also
guaranteed.

Theorem 2: Under distributed scheduling algorithm (25)
and if condition (24) is satisfied, all the charging stations are
utilized, i.e., consensus (6) is achieved as k →∞ and the
queues at service stations will grow.

Proof: Based on condition (24) and function ĝi(xi)
in (12), the dynamics (20) becomes

zi(k + 1) = zi(k) +
fi(k)

ciµi
− 1. (27)

Substituting (25) into (27) yields the closed-loop dynamics:

z1(k + 1) = z1(k) + ξ0(k)− 1

zi(k + 1) = (1− η)zi(k) + ξ0(k) + ηzi−1(k)− 1

Defining and computing z̃i,l
4
= zi − zl yield

z̃1,2(k + 1) = (1− η)z̃1,2(k)
z̃j,j+1(k + 1) = (1− η)z̃j,j+1(k) + ηz̃j−1,j(k)

where j = 2, · · · , N−1. Since η ∈ (0, 1), we have z̃1,2 → 0
and it follows that z̃j,j+1 → 0, i.e., consensus (6) is achieved.
Furthermore, it follows that

fi(k)→ ciµiξ0(k). (28)



Finally, choosing ξ0(k) as the one in (26) and computing∑N
j=1 fj(k) yields

N∑
j=1

fj(k) = ξ0(k)

N∑
j=1

cjµj = ξi((k − 1)T + δT )

which is equal to the condition in (22). In addition, from (24)
and (26) we have ξ0(k) ≥ 1. Then, from (28) we know that
fi(k) ≥ ciµi and it follows from (27) that the queue at the
service stations will grow.

Note that from (25) and zi(k)→ ξ0(k), we have

p∗i →
ciµi
αi(k)

ξ0(k). (29)

Due to the variation of traffic flow on the highway during
the day, the service stations may switch between distributed
scheduling algorithms (18) and (25) to minimize the total
waiting time of the EVs.

IV. DISTRIBUTED CONTROL OF EVS’ CHARGING

After scheduling the number of EVs that need to be
charged at each charging stations, the next objective is to
design a distributed control uv,i(k) for each EV whose global
goal is to meet the optimal percentage of EVs to be charged
at each station, i.e. the output of the high-level scheduling
while satisfying its own constraint, see figure 4. Given the
percentage of EVs that need to be charged at station i, i.e. p∗i
in (23) or (29), the control objective of each EV approaching
service station i in (8) can be reformulated as the following
optimization problem.

minimize
uv,i

[
p∗i −

∑
v uv,i(k)

αi(k)

]2
subject to e+v,i ≥ dir

−
v

uv,i(k) ∈ {0, 1}.

(30)

Note that the first constraint in (30) is introduced to ensure
that the EVs will be charged at service station i whenever
its battery level is not sufficient to reach the next service
station.

In order to solve optimization (30) distributively, the EVs
have to negotiate with each other based on their battery
level and by means of vehicle-to-vehicle communication. We
assume that the communication topology between the EVs
approaching service station i is given by a strongly connected
graph. First, EVs approaching service station i receive the
information on p∗i (k) and αi(k) broadcasted by service
station i by means of infrastructure-to-vehicle communica-
tion. Using this information, each EV within the set Ni(k)
can independently compute uitotal(k) =

∑
v uv,i(k) ∈ Z that

minimize (p∗i −
ui
total

αi(k)
)2. Without loss of generality, it is

assumed that dim(Ni(k)) = αi(k). The EVs then compute
their residual battery level e−v,i and set their control input
uv,i(k) = 1 if e−v,i < dir

−
v . Let the number of EVs that

do not satisfy e−v,i ≥ dir
−
v be mi. The rest mi EVs then

sort their e−v,i values in an ascending order distributively
using e.g. [22]. Finally, the EVs with (uitotal(k) − mi)th
smallest e−v,i set their input uv,i(k) = 1. The pseudo-code of
the algorithm is presented in algorithm 1.

Algorithm 1 Distributed algorithm to compute (30)
Require: p∗i , αi(k), di, a strongly connected communication

topology.
1: for k = 1, 2, . . . do
2: for i = 1, . . . , N do
3: set Mi = {}
4: for v = 1, . . . , αi(k) do
5: uitotal(k) = argmin (p∗i −

ui
total(k)
αi(k)

)2

6: compute e−v,i
7: if e−v,i < dir

−
v then

8: set uv,i(k) = 1
9: Mi ← v

10: end if
11: end for
12: compute mi = dim(Mi)
13: sort distributively [22] in an ascending order e−v,i

for v /∈Mi

14: set uv,i(k) = 1 for (uitotal(k)−mi)th smallest e−v,i
15: end for
16: end for

V. NUMERICAL EXAMPLE

In this section, we illustrate the performance of the pro-
posed distributed scheduling using a numerical example.
We consider a highway consisting of 4 service stations.
We assume that each service station is equipped with fast
chargers, i.e. the service rate for all stations is given by
µi = 2 (EVs/h) and the number of charging slots at each
station is given by c1 = 5, c2 = 4, c3 = 5, c4 = 4.
In addition, the distances between the service stations are
d1 = 2, d2 = 2, d3 = 2. The net average flow at each node
is assumed to be constant and equal to γ1(k) = 12 (EVs/h),
γ2(k) = 6 (EVs/h), γ3(k) = 10 (EVs/h), γ4(k) = 5 (EVs/h)
and the average number of charging needed for each EVs is
given by βi = 1 ∀i.

First, we consider the case when there is no scheduling. In
this case, the drivers decide to charge their battery near their
maximum driving range. For example, the EVs approaching
service station 1 decide to charge their battery at service
station 3. As we can see in this case, since f3(k) > c3µ3

the number of EVs queueing at service station 3 will grow
unbounded as time evolves. Next, we apply the distributed
scheduling algorithm proposed in section III-C. It is assumed
that the distributed estimation of total charging needs, i.e.
ξi(kT ) in (14) have been converged. The results are shown
in figures 6 and 7. As illustrated in figure 7, all the service
stations are uniformly utilized as time evolves, i.e. zi →
constant. This results in that the total waiting time for the
EVs at the service stations is minimized. In addition, we can
observe that since

∑4
i=1 βiγi(k) <

∑4
i=1 ciµi, the number

of EVs at each service station is bounded at the steady state.
As can also be seen from figure 6, in order to balance the
utilization of all service stations, most of the EVs originating
from node 1 are charged at service stations 1 since its number
are the largest among all the nodes.
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Fig. 6. Proposed distributed scheduling for EVs’ charging
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Fig. 7. Utilization of service stations, i.e. zi(k) = xi(k)/ciµi using the
proposed distributed scheduling algorithm

VI. CONCLUSION AND FUTURE WORKS

This paper proposes a higher level distributed scheduling
algorithm together with a lower level cooperative control
policy for individual EVs on a highway in order to optimize
the operation of the overall charging network. Specifically,
the objective is to make all the charging stations along the
highway be well (uniformly) utilized and the total waiting
time is minimized. A consensus-based distributed scheduling
algorithm is developed which only relies on the information
from the neighboring service stations. Furthermore, a nego-
tiation strategy based on the current battery level and among
the drivers by means of the vehicle-to-vehicle and vehicle-
to-infrastructure communications is presented to meet the
published scheduling level. Simulation confirms that the
proposed strategy improves the overall system performance.
As future works, we aim to investigate the performance of
the proposed algorithms in the presence of communication
failures between the EVs and with the service stations,
influence of human behaviors and also to consider more
realistic energy model of the EVs.
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