FLORIDA SOLAR

ENERGY CENTER®

Simplified Sizing Procedure for Solar Domestic Hot Water Systems

Publication Number

FSEC-GP-10-83 Revised April 1992

Copyright

Copyright © Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road, Cocoa, Florida 32922, USA (321) 638-1000 All rights reserved.

Disclaimer

The Florida Solar Energy Center/University of Central Florida nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Florida Solar Energy Center/University of Central Florida or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Florida Solar Energy Center/University of Central Florida or any agency thereof.

A Research Institute of the University of Central Florida 1679 Clearlake Road, Cocoa, FL 32922-5703 • Phone: 321-638-1000 • Fax: 321-638-1010 www.fsec.ucf.edu

Simplified Sizing Procedure For Solar Domestic Hot Water Systems

Florida Solar Energy Center

FSEC-GP-10-83 Revised April 1992

The following procedure was developed to size residential solar water heating systems in Florida. See last page for limitations and assumptions.

Hot water demand and tank size

Step 1. Using Table 1, estimate daily hot water use (GALLONS) and select a nominal tank size (TANK SIZE).

	gal/dav
GALLONS	(1)

_____ gal

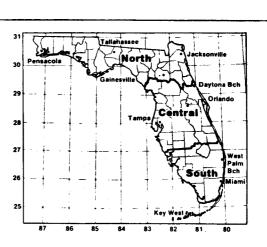
TANK SIZE

Table 1. Hot water demand and tank size.

Average GALLONS and minimum TANK SIZE based upon number of people or bedrooms:

	20	20
 1	30	30
2		40 52
2	55	52
 3	70	80
4	****	80 100
т Т	100	100
 5	110	120
•	2 3 4 5	40 2 50 55 3 70 85 4 90

(Add 15 gallons for each additional person.) (Add 20 gallons for each additional bedroom.)


Step 2. Using Figure 1, determine the proper cold water temperature (COLDTEMP) for location.

COLDTEMP (2)

Figure 1. Cold water temperatures

Region	COLDTEMP
North Florida (1, 2, 3)*	68°F
Central Florida (4, 5, 6)*	72°F
South Florida (7, 8, 9)*	76°F

* Correspond to regions for the Florida model energy building code.

Step 3. Calculate how much energy is needed (BTUNEED) to heat the water to 122°F.

BTUNEED = 8.34 x GALLONS x (122 - COLDTEMP) x Standby loss factor BTUNEED = 8.34 x ______ x (122 - _____) x _____ Btu/day (Step 1) *See last page for explanation.

Table 2. Standby heat loss from storage

Type of tank insulation	Standby loss factor		
1-in. foam or 2.5-in. fiberglass ($R = 8 - 9$)	1.20		
2-in. foam (R = 16 - 17)	1.12		

(Use linear interpolation to obtain standby loss factor for insulation materials having other R-values.)

Table 2 is to be used for sizing systems with FSEC ratings. If SRCC rating is used and if there are no other backup tanks then use a standby loss factor or 1.0.

Example: A thermosiphon water heater with its storage tank containing a back-up element has an SRCC rating. There are not other back-up tanks for the system. In this case use a standby loss factor = 1.0.

Example: The same thermosiphon water heater system is used as a preheater to another back-up tank. The element in the thermosiphon tank may not be connected. In this case use a standby loss factor from Table 2 corresponding to back-up tank insulation levels.

ep 4.	Determine penalty factors that affect sizing.		
	a. Select the System Factor from Table 3	3	
		System Factor	(4a)
	b. Select the proper Tilt Factor from Tab		
		Tilt Factor	(4b)
	c. Select the Orientation Factor from Ta		
		Orientation Factor	(4c)
	Calculate the overall penalty factor (PENALTY) for the combinat of all three individual effects:	tion	
	PENALTY = System Factor x Tilt Factor x Orientation Factor		
	PENALTY = x x	<u> </u>	
	(Step 4a) (Step 4b) (Step 4c)	PENALTY	(4)

Table 3. System factors

System configuration	System factor
Direct system with no heat exchanger.	1.20
Indirect system with a heat exchanger between collector and storage tank.	1.30
Systems with SRCC system certification and Q_{NET} rating.	1.00

		·····	Table 4. Ti	ilt factors			
	Collector tilt Tilt facto					S	
	Tilt	Roof	Roof	North	Central	South	
	angle	pitch	tilt	Florida	Florida	<u>Florida</u>	
	0° to 3°	0	0°	1.25	1.22	1.19	
	3° to 7°	1 in 12	4.8°	1.15	1.14	1.12	
	7° to 12° 12° to 16°	2 in 12 3 in 12	9.5° 14.0°	1.09 1.05	1.08 1.04	1.06 1.03	
	12° to 10°	4 in 12	14.0 18.4°	1.02	1.01	1.03	
	20° to 25°	5 in 12	22.6°	1.00	1.00	1.00	
	25° to 30°	6 in 12	26.6°	1.00	1.00	1.00	
	30° to 37°	8 in 12	33.7°	1.01	1.01	1.02	
	37° to 43°	10 in 12	39.8°	1.04	1.05	1.06	
	43° to 50°	12 in 12	45.0°	1.08	1.10	1.12	,
	<u></u>		Table 5. Orier	ntation factors		······································	
		Collector orien			ntation factor		
		South or nearly	y south		1.00		
		Southeast or s	outhwest		1.15		
		East or west			1.40		
	RATREQD =	% of the annual hot BTUNEED x 0.70 x 0.70 x (Step 3)	x PENALTY	-	formula:	RATREQD	Btu/day (5)
ер 6.	For the collect the intermedia	tor selected, record ate temperature (B' (GROSSAREA) in	t the thermal p FURATING) ir	n Btu/day and th	ne gross		(0)
		nufacturer					
	Model No						
	Thermal Perfe	ormance Rating at t	he Intermediat	e Temperature	(Btu/dav)		Btu/day
		ET or QNET equiva		•		BTURATING	(6a)
	Gross Collect	or Area (ft²)					ft ²
		number of collector				GROSSAREA	(6b)
	NUMBER = -	$\frac{\text{RATREQD}}{\text{BTURATING}} = -$	(Step 5)			NUMBER	
	Select the actual number of collectors to be used. This is the nearest whole number to (6c).						$\overline{\mathbf{DS}}(7_2)$
tep 7.						HO. COLLECIO	no(raj
tep 7.	whole number		ray is:				
tep 7.	whole number The total area	a of the collector ar	-	SSAREA			
tep 7.	whole number The total area	a of the collector ar A = NO. COLLEC	TORS x GROS	SSAREA			ft²

*For those systems that are SRCC certified use the SRCC Q_{NET} rating here. Systems with only an FSEC test and certification may get an equivalent SRCC Q_{NET} from FSEC Testing & Operations on request.

Based upon the actual number of collectors to be used, compute the solar fraction (SOLAR FRACTION):

SOLAR FRACTION =	0.70 x	=	
NUMBER	(Step 6c)		SOLAR FRACTION (7c)
If the solar fraction (Step 7c) is less than 0.65, the col Consider either adding another collector or using a d			

This procedure has several constraints:

- 1. The procedure is valid only for Florida.
- 2. The procedure is based on sizing solar systems to provide between 65% and 75% of the heating load; i.e., a solar fraction of between 0.65 and 0.75. A solar fraction of 0.7 is estimated to be optimum for most installations and, in particular, for solar collectors with a tilt angle of approximately 20° to 25° (mounted parallel to the 4-in-12 or 5-in-12 pitched roofs that are common in Florida). The 20° 25° collector tilt angle provides for an aesthetic installation and meets 100% of the hot water needed in summer and 50% in winter. Systems can be sized to maximize lifetime savings by providing a larger solar collector that will produce a solar fraction of 0.9 or higher. To achieve this solar fraction, the collectors will need to be installed at a tilt angle of between 40° and 50°.
- 3. The hot water delivery temperature of 122°F in step 3 was obtained by FSEC from analysis of two years of actual experimental data. The 122°F delivery temperature is consistent with Florida law, which requires that hot water thermostats be set no higher than 125°F. It is also consistent with electric water heater energy consumption data as measured by Florida Power and Light Co.

Automatic dishwashers may not clean dishes very well at 122°F. However, most dishwashers have a cycle that uses an electric element in the dishwasher to boost the water temperature to about 140°F.

This form was developed by Subrato Chandra with the assistance of David Block, Mukesh Khattar, David LaHart, Tim Merrigan, Jerry Ventre and Ingrid Melody.

© Copyright 1983 by Florida Solar Energy Center.

This document was promulgated at a cost of \$117, or 6¢ per copy, to inform the public about sizing of solar water heating systems.