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Abstract 

 

This report addresses the ever increasing percentage of whole house energy use that is 

attributable to miscellaneous electricity loads (MELs) and major appliances.  It builds on earlier 

U.S. Department of Energy (DOE) reports on the same subject and incorporates the 2005 

Residential Energy Consumption Survey (RECS) public use data set to determine how major 

appliance use is related to the number of bedrooms in existing homes.  These data, coupled with 

existing and proposed DOE appliance testing and labeling standards, are then used to determine 

a set of baseline lighting and appliance energy end use values for use in the HERS Reference and 

Building America Benchmark whole house energy analysis procedures.  The report makes 

recommendations for revising the reference standards that are in current use and provides 

mechanisms for expanding the number and types of lighting and major appliances that are 

considered to be rated features of a home. 

 

The report also provides a section on the potential of energy feedback devices and home energy 

management systems to reduce home energy use. 

 

Executive Summary 
 

The introduction of energy codes and standards following the Arab Oil embargo in 1973 has, 

over time, dramatically altered the energy use patterns in homes, with considerable relative 

reductions in heating and cooling energy consumption due to increasing minimum code 

requirements for these energy end uses.  Other major appliances, such as refrigerators and 

freezers, have also seen major reductions. However, for lighting and appliances, the evidence is 

that energy use has increased, especially as related to advances in home electronics and 

entertainment.  For example, even moderately sized, high-definition TVs now consume more 

energy than modern refrigerators. Computer simulation studies on the impact of residential 

energy codes in Florida show that, for the same sized home, while heating, cooling and hot water 

energy uses comprised 72% of total new home energy use in 1980, these uses now comprise only 
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45% of total new home energy use.
1
  Accurate estimates of these appliance and lighting energy 

uses becomes increasingly important as we move toward lower energy use objectives for 

residences, culminating in net zero energy homes. 

 

In 2004, the Residential Services Network (RESNET) began developing standards for rating the 

energy performance of homes that include provisions for all of the energy uses in a home. The 

result was established by RESNET as their Home Energy Rating System (HERS) standards in 

2006.
2
  These standards incorporate provisions for estimating the total energy use in homes by 

adding energy use estimates for lighting and appliances to estimations for heating, cooling and 

hot water end uses.  At the same time, the U.S. Department of Energy (DOE), through their 

National Renewable Energy Laboratory (NREL) in Golden, Colorado, developed similar 

methods for estimating lighting and appliance energy estimates for DOE‘s Building America 

(BA) program.
3
 

 

Both the RESNET and the BA methodologies for estimating miscellaneous electricity loads 

(MELs – i.e. lighting and appliances loads) in homes used the International Energy Efficiency 

Code (IECC) as a basis for comparison.  The BA methodology used the 2003 IECC specification 

for total internal gains in homes (72,000 Btu/day) to calibrate for residual energy uses that were 

not accounted for by major appliance energy uses derived from appliance EnergyGuide labels 

and other national studies.   RESNET used a similar methodology but developed a total 

appliance and lighting energy use based on the internal gain equation used in the 2004 

supplement to IECC, which was based on the conditioned floor area of the home.  Both methods 

produced similar results as the BA methodology assumed a base home size of 1800 ft
2
 and 

projected the resulting residual ―miscellaneous‖ loads to other homes‘ sizes. 

 

Following implementation of the BA and HERS methods for estimating residential MELs, 

practitioners expressed concern that both methods tend to over predict MELs in large homes.  

For the BA methodology, the proportion of MELs that is attributed to home size has a value 

equal to 2.47 kWh/yr-ft
2
 and for HERS that value is slightly larger at 2.69 kWh/yr-ft

2
.  However, 

both of these values originated from values contained in the IECC requiring that specific internal 

gains be applied to performance-based code compliance calculations.  The data supporting these 

IECC internal gain simulation requirements are scant. 

 

In 2008, a report commissioned by the U.S. Department of Energy (DOE) examined trends in 

lighting and miscellaneous electricity consumption in U.S. homes in a comprehensive fashion 

(Roth et al., 2008).  These data, coupled with the U.S. Energy Information Administration‘s 

(EIA) 2005 Residential Energy Consumption Survey (RECS) public use microdata
4
 are used by 

this report to ―re-derive‖ a set of standard MELs energy use profiles. In particular, measured 

energy use of specific equipment is used along with saturation data depending on house size to 

develop explicit relationships based on available data.  One important result of the work is that 

                                                 
1
 Fairey, P., 2009, ―Effectiveness of Florida‘s Residential Energy Code:  1979 – 2009.‖  FSEC-CR-1806-09,  Florida 

Solar Energy Center, Cocoa, FL. (http://www.fsec.ucf.edu/en/publications/pdf/FSEC-CR-1806.pdf). 
2
 RESNET, 2006, ―Mortgage Industry National Home Energy Rating Standards.‖  Residential Services Network, 

Oceanside, CA. 
3
 Hendron, R., et al., 2004, ―Building America Performance Analysis Procedures.‖ Report No. NREL/TP-550-

35567, National Renewable Energy Laboratory, Golden, CO. 
4
 http://www.eia.doe.gov/emeu/recs/recspubuse05/pubuse05.html  

http://www.fsec.ucf.edu/en/publications/pdf/FSEC-CR-1806.pdf
http://www.eia.doe.gov/emeu/recs/recspubuse05/pubuse05.html
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the proportion of MELs that are directly attributable to the size of residences is moderated to 

1.76 kWh/yr-ft
2
 compared with 2.47 and 2.69 kWh/yr-ft

2
 as used by the current BA and HERS 

methods, respectively.  This result tends to support concerns that present methods overestimate 

MELs in large homes. 

 

This report also expands on the number of ―rated‖ appliances and lighting attributes in homes 

that are considered by comparative simulation methods by adding proposed new rating methods 

for televisions, clothes washers and clothes dryers.  Additionally, the report recommends 

modifying or improving rating methods for lighting, refrigerators, ranges and ovens and ceiling 

fans.   

 

Finally, in Chapter 10, this report summarizes the potential of smart meters, energy feedback 

devices and automated controls in reducing MELs and other energy uses in the home. This 

chapter includes a thumbnail sketch of current but rapidly advancing technologies. 

 

Appendix B of this report presents a set of proposed modifications to the 2006 Mortgage 

Industry National Home Energy Rating Standards that fully incorporates the findings and 

recommendations of the report. 

 

 

1 Introduction 

 

As shown in previous research, miscellaneous electricity loads (MELs) in homes is the fastest 

growing end-use  and one that is difficult to appropriately characterize. A recent report 

completed by TIAX for the U.S. Department of Energy (Roth et al., 2008) provided a 

comprehensive examination of recent trends in miscellaneous electricity consumption in U.S. 

homes. However, the information contained in this report (Roth et al., 2008) has not been fully 

incorporated into analysis procedures with the Building America Benchmark simulation 

methodology (Hendron, 2008) because the Benchmark is intended to represent houses built in 

the mid-1990s, when the Building America program was created. Similarly, the same data has 

not yet been incorporated into the Home Energy Rating (HERS) procedures (RESNET, 2006).   

 

Similarly, the energy use of some major appliances, such as dishwashers and washers, have 

advanced in recent years with complex influences on electricity consumption that have not been 

well-captured in HERS procedures. 

 

In this report, we use the TIAX data, as supplemented by the recently available 2005 Residential 

Energy Consumption Survey (RECS) public use data set to make significant improvements in 

the prediction methods for estimating energy use of miscellaneous electric loads.  Also in 

considering how best to incorporate the TIAX and RECS data, we further reviewed and 

assimilated portions of the MELS calculation procedures developed by NREL (Hendron et al., 

2004; Hendron and Eastment 2006) and data tables for some small end-uses not covered by 

TIAX but previously developed by LBNL (Sanchez et al. 1998; Mills et al., 2008). After critical 

review of available attributes and approaches, we developed methods for incorporating the 

information into the currently utilized analysis procedures. Our approach was to balance 

calculation complexity with the need to address elements that make a significant difference in 
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household energy use either for new buildings or retrofit applications.  A secondary benefit of 

the effort is to make the BA Benchmark and HERS procedures more similar in their treatment 

for the covered energy end-use loads. 

   

The original HERS process, introduced in 1999, only considers heating, cooling and water 

heating.  Energy codes also typically account for only these three large energy uses.  In 2006, the 

HERS process added appliance and lighting to its process, allowing specific ratings for 

refrigerators, dishwashers, ceiling fans and lighting. Within this report, we attempt to develop 

methodologies to cover the following ten end-use categories in a consistent fashion using the 

best available data: 

 

• Indoor lighting  

• Outdoor lighting 

• Refrigerators 

• Clothes dryers 

• Clothes washers 

• Televisions 

• Dishwashers 

• Ceiling Fans 

• Ranges and ovens 

• Residual MELs 

 

Figure 1 shows the average energy 

use of a typical American home in 

2005 according to RECS data. 

Those data summarized energy use 

in a typical U.S. household, 

consisting of 2.57 occupants in a 

building totaling 1,970 square feet 

of conditioned floor area.
5
 The 

average U.S. household, reflecting 

the most typical saturation, has 

natural gas heat, but uses an 

electric range and dryer. Such a 

household uses about 10,918 kWh 

and 589 therms of natural gas.  

 

As shown in the figure, the 

analysis in this report addresses or 

revises the 28% of energy end-

uses that comprise lighting and 

household appliances. It also improves the calculation of 60% of typical residential electric uses. 

 

                                                 
5 The source for the data is given in Appendix 1. Note that the breakout of the minor appliances agree very closely 

with the RECS estimate for lighting and other appliances in that accounting. 

 
Figure 1.  Average energy end uses in the average U.S. household in 

2005. Note that the exploded sections of the chart show the 28% of 

household energy use by the analysis in this report. 
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Importance of Correct Assessment of Residual Miscellaneous Energy Use 

 

Properly accounting for miscellaneous electricity use is important, particularly if one is 

concerned with reducing all energy loads (e.g. Zero Energy Homes). Properly accounting for 

miscellaneous electricity loads is also critical to accurately predicting influences on heating and 

cooling. Currently, the HERS ratings system place an emphasis on making certain that 

simulation software adequately predict the influence of various design variations. However, the 

suite of tests clearly shows that variations in internal heat loads in buildings has large impacts, 

not only on energy use of the appliances and lighting involved, but also on the heating and 

cooling loads experienced by the buildings (Judkoff and Neymark, 1995). 

 

This study finds that miscellaneous electricity use does not vary with house size as aggressively 

as specified by the current HERS Reference schedule. Thus, designers looking to achieve low 

energy buildings will best evaluate conditions under more realistic influences as proposed in this 

document. Here are the implications: 

 

• Smaller (e.g. Habitat size) homes will do best to concentrate on reducing appliance and 

lighting energy in hot climates to achieve lower energy use since internal gains will 

dominate cooling loads. 

 

• Larger homes will show that improving the building shell is relatively more important 

since much of it is relative to the internal gains. 

 

In particular, anyone using a simulation metric that examines all building electrical end-uses,for 

instance trying to design Zero Energy Homes, should ensure that they use the methods provided 

below to better estimate the miscellaneous electricity use. 

 

Finally, while acknowledging that differences are certain to remain and as previously described 

(Fairey et al., 2006), it is desirable that the BA Benchmark and the HERS Energy Rating system 

standards  be as consistent as possible. Thus, the current work is viewed as a possibility to 

improve the consistency of the analysis methods while advancing the calculation methodology 

itself for lighting, appliances and miscellaneous electric loads.  However, application of these 

recommendations to the Benchmark must be completed in the context of a comprehensive 

modernization to 2009 construction practices, appliance standards, consumer products, and 

occupant behavior, along with a revision to the Building America energy savings targets for 

consistency with the revised Benchmark. 

   

2 Clothes Washers and Clothes Dryers 

    

DOE test procedures for clothes washers and clothes dryers are described in 10 CFR 430, 

Appendix J and J-1 of the U.S. Federal Register.  These two appliances are intimately linked 

because the clothes washer‘s efficacy defines a large portion of the clothes dryer‘s energy use.  

The linkage is due to the fact that clothes washers not only determine the amount of hot water 

energy necessary to wash the clothes, but they are also  a very large determinant in the amount of 

water that must be removed by the clothes dryer.  The Modified Energy Factor (MEF) is a major 
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determinant of the energy use required for drying the clothes.
6
  To separate the energy use for the 

clothes washing machine itself, hot water for the wash cycle and the later influence on dryer 

energy use, it is necessary to use the test procedures of Appendix J and J-1 to separate the clothes 

washer energy use from the test procedures. A similar but dependent procedure must be used to 

estimate the energy use of clothes dryers alone.  Only after this procedure is accomplished can 

the two devices be ―mixed and matched‖ to determine the energy use associated with 

combinations of the two appliances under various sets of fuel options (i.e. electricity or natural 

gas). The proposed calculation procedures are based on a simplification of the procedures 

originally created by Eastment and Hendron (2006). 

 

2.1 Clothes Washers 

 

Clothes washers are a very common household appliance; 95% of U.S. households have them. 

As seen in Figure 1, their direct impact on energy use is small—less than half a percent of total 

household energy consumption. However, clothes washers have large impacts on two other 

energy using appliances: water heaters and clothes dryers. Thus, relative to energy impacts, 

clothes washers are also complicated since they have three influences on household energy use. 

 

• They directly use electricity to run the machine, typically for the agitator, drum motor 

and valves and controls. 

• The amount of hot water used to operate clothes washers directly impacts the amount of 

household hot water that must be supplied by the water heating system. 

• The effectiveness of the spin cycle at the end of the washing operation influences how 

much water must be removed by the clothes dryer, and hence impacts its energy use. 

 

Clothes washers add water, agitate and clean, rinse and then spin dry clothes prior to their being 

removed for final drying in the clothes dryer. 

 

2.1.1 Variation of Clothes Washer Use 

 

The 2005 RECS data reports on how many clothes washing loads are completed in the typical 

American household. The data shows that 301average laundry loads are done per year. It should 

be noted that the RECS data generally shows a considerably lower number of laundry loads done 

per year with an average of 301loads versus the 392 loads per year that were used in the U.S. 

DOE washing machine performance labeling procedures.  

 

However, the RECS data does show the laundry loads varying by household size: 

 
. regress loadsyr bedrooms 

 

      Source |       SS       df       MS              Number of obs =    3610 

-------------+------------------------------           F(  1,  3608) =  170.67 

       Model |  6357371.21     1  6357371.21           Prob > F      =  0.0000 

                                                 
6
  The clothes washer MEF intrinsically includes the energy use of the washing machine, its hot water and energy 

used for drying clothes. Within the DOE Energy Guide label for clothes washers, the labeled kWh, and MEF can be 

used to derive the specific energy use for the clothes washer machine, hot water use and energy used for clothes 

drying. 
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    Residual |   134395506  3608  37249.3086           R-squared     =  0.0452 

-------------+------------------------------           Adj R-squared =  0.0449 

       Total |   140752877  3609    39000.52           Root MSE      =  193.00 

 

------------------------------------------------------------------------------ 

     loadsyr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    bedrooms |   45.61842    3.49189    13.06   0.000     38.77215     52.4647 

       _cons |    164.423   10.93953    15.03   0.000     142.9748    185.8713 

------------------------------------------------------------------------------ 

 

 Standard Loads per Year (SLY) = 164+ 45.6*Nbr 

where:  

Nbr= Number of bedrooms  

 

Although the R-square is very low, the t-statistic shows an undeniable relationship with the 

number of bedrooms in the home. Given this formulation, the average three-bedroom household 

will wash 301 laundry loads per year: 

 

Bedrooms Loads 

1   210 

2   256 

3   301 

4   347 

5   393    

 

Different washing machines have different volumetric capacities.  To account for this fact, a 

Nominal Cycles per Year (NCY) is calculated based on the SLY and a standard washing 

machine capacity of 3.0 ft
3
.
7
 For this purpose, the capacity of the ―typical‖ clothes washer (2.847 

ft
3
) used in the DOE engineering analysis for development of the clothes washer test standard is 

used to create a ratio that can be applied across the variety of clothes washer capacities such that 

the same quantity of clothes is washed for the household regardless of washer capacity.  Thus, 

the nominal cycles per year for washers become: 

 

NCY = (3.0/2.847) * (164 + Nbr*45.6)  

 

Within our proposed estimation procedure we explicitly assume that a clothes dryer load is done 

for each clothes washer load.  The BA Benchmark currently assumes that 84% of washer loads 

result in dryer loads (Dryer Utilization Factor, DUF= 84%) based on the DOE test method for 

clothes washers (10 CFR Part 430, Appendix J1). However, here we assume that all clothes 

washer loads are dried using the clothes dryer unless otherwise specified. 

 

  

                                                 
7
 The average size of standard sized clothes washers in the EPA Energy Star database is 3.31 cubic feet so the 

average capacity of clothes washers in use in the U.S. is growing—a fact also agreed upon by the Association of 

Home Appliance Manufacturers (AHAM) in recently described annual trends. Thus, we assume that the base 

volume of the clothes washer linked to the number of cycles per year was approximately 3 cubic feet. 
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2.1.2 Procedure to Estimate Clothes Washer Energy Use 

 

The procedures to account for all the various impacts identified above have already been 

evaluated by Eastment and Hendron (2006). These procedures use data from the clothes washer 

energy guide label and the machine Modified Energy Factor (MEF). They also use basic algebra 

to solve for machine electricity use per cycle, hot water energy use per cycle and residual water 

remaining in clothes at the end of the cycle. We propose that Building America and RESNET 

adopt a slightly simplified procedure to show the complex influence of washing machines on 

household energy use. The full procedure is described below. 

 

 kWh/yr = ((LER/392)-((LER*($/kWh)-AGC)/(21.9825*($/kWh) - 

                             ($/therm))/392)*21.9825)*ACY Eqn. 1 

where: 

   LER = Label Energy Rating (kWh/yr) from Energy Guide Label 

   $/kWh = Electric Rate from Energy Guide Label 

   AGC = Annual Gas Cost from Energy Guide Label 

   $/therm = Gas Rate from Energy Guide Label 

   ACY = Adjusted Cycles per Year 

      where ACY = NCY * ((3.0*2.08+1.59)/(CAPw*2.08+1.59)) 

         where  

            NCY = nominal cycles per year based on RECS data  

            CAPw = washer capacity in cubic feet from the manufacturer‘s data or the CEC  

database
8
  or the EPA Energy Star website 

9
 or use default of 2.874 ft

3
 

 

Daily hot water use is calculated as follows: 

 

 DHWgpd = 120.5* therms/cyc * ACY / 365 Eqn. 2 

where: 

    therms/cyc = (LER * $/kWh - AGC) / (21.9825 * $/kWh - $/therm) / 392 

 

Rating and label Data on clothes washer may be found at the following web sites: 

 

EPA:  www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers 

CEC:  www.energy.ca.gov/appliances/database/excel_based_files/Clothes_Washers/ 

 

2.1.3 Default Vintage (pre 2008) Clothes Washer 

  

For a functional rating method, we need data for the characteristics of older, unlabeled clothes 

washers and also unlabeled, new clothes washers manufactured before 2008 when the Modified 

Energy Factor (MEF) increased to 1.27. Thus, the default unit is for a case where there is no 

label data and for a unit older than those manufactured in 2008. 

 

The default vintage washer is based on the unit described in the DOE engineering analysis with a 

2.847 cubic foot capacity and the following energy related characteristics:
 10

 

                                                 
8
  http://www.energy.ca.gov/appliances/database/excel_based_files/ 

9
  http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers 

http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers
http://www.energy.ca.gov/appliances/database/excel_based_files/Clothes_Washers/
http://www.energy.ca.gov/appliances/database/excel_based_files/
http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers
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   LER = $704 

   $/kWh = $0.0803/kWh 

   AGC = $23 

   $/therm = $0.58 

   CAPw = 2.847 ft
3
 

   NYC = 320 (for 3 bedroom home) 

   ACY = 333 

   Therms/cyc = 0.072 

 

Substituting into equations 1 and 2, the annual electric energy and hot water uses for the default 

vintage (pre 2008) washer become: 

 

    Annual energy use = 69.8 kWh/year 

    Daily hot water use = 7.94 gpd 

    Daily hot water savings: 7.94 - 7.94 = 0 gpd (this is the baseline hot water use) 

 

2.1.4 Default Standard Efficiency New Clothes Washer (post 2007) 

 

We also propose a standard new clothes washer without label information. The unit would have 

been manufactured after 2007. Our proposed standard Efficiency new clothes washer meets the 

required minimum Modified Energy Factor of 1.27. The standard unit is an actual machine: ad 

GE WJSR416D 3.2 cubic foot top-loader (MEF= 1.27) 

 

   LER = $487 

   $/kWh = $0.0803/kWh 

   AGC = $23 

   $/therm = $0.688 

   CAPw = 3.2 ft
3
 

   NYC = 320 (for 3 bedroom home) 

   ACY = 304 

   Therms/cyc = 0.038 

 

Substituting into equations 1 and 2, the annual electric energy and hot water uses become: 

 

    Annual energy use = 122.6 kWh/year 

    Daily hot water use = 3.82 gpd 

    Daily hot water savings: 7.94 - 3.82 = 4.12 gpd 

 

The technical support document on which this calculation is based is the BA Benchmark:  

http://www.nrel.gov/docs/fy06osti/39769.pdf 

     

  

                                                                                                                                                             
10

 http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/chapter_4_engineering.pdf 

http://www.nrel.gov/docs/fy06osti/39769.pdf
http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/chapter_4_engineering.pdf
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2.1.5 Default Energy Star Clothes Washer 

 

We also propose that a default Energy Star clothes washer be made available for use within the 

RESNET/HERS procedures. The default minimum Energy Star Clothes Washer is a real model: 

a GE WJR 5550H.* It has an MEF of 1.78 and a Water Factor of 7.9 gallons-- it barely complies 

with the Energy Star requirement.  We suggest that thisunit become the new default Energy Star 

clothes washer for HERS/RESNET and potentially for BEopt as well. 

 

Weblink for EnergyGuide label for GE unit: 

http://products.geappliances.com/ApplProducts/Dispatcher?REQUEST=SPECPAGE&SKU=WJ

RE5550HWW&SITEID=GEA 

 

The following input parameters are used for the default Energy Star clothes washer, although the 

procedures can be automated so the user does not have to input each parameter: 

 

   LER = $281 

   $/kWh = $0.0860/kWh 

   AGC = $14 

   $/therm = $0.910 

   CAPw = 3.5 ft
3
 

   NYC = 320 (for 3 bedroom home) 

   ACY = 282 

   Therms/cyc = 0.026 

 

Substituting into equations 1 and 2, the annual electric energy and hot water uses become: 

 

    Annual energy use = 38.2 kWh/year 

    Daily hot water use = 2.46 gpd 

    Daily hot water savings: 7.94 – 2.46 = 5.48 gpd 

 

Minimum Energy Star Clothes Washer  

(GE WJR 5550H  3.5 cubic foot top-loader (MEF= 1.78; Water Factor = 7.9) 

 

Shown above, the reduction in hot water use is a major impact of the more efficient clothes 

washers. 

     

2.2 Clothes Dryers 

  

Some 93% of U.S. single family households have a clothes dryer in the 2005 RECS data. Of 

these clothes dryers, about 76% are electric. The remaining dryers are fueled by natural gas or 

propane. 

 

In most households, electric or natural gas clothes dryers replace the need for clothing lines to 

dry clothes.  However, clothes dryers use an appreciable amount of energy in the average 

household. Electric clothes dryers typically have a 5,000 Watt heating element and a 0.375 hp 

tumbler motor and fan blower. Typically, they use about 3 kWh per load of clothes dried.  

http://products.geappliances.com/ApplProducts/Dispatcher?REQUEST=SPECPAGE&SKU=WJRE5550HWW&SITEID=GEA
http://products.geappliances.com/ApplProducts/Dispatcher?REQUEST=SPECPAGE&SKU=WJRE5550HWW&SITEID=GEA
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Natural gas clothes dryers typically use a 22,000 Btu/hr burner which can use a fifth of a therm 

of natural gas for typical loads of clothes and another 0.5 kWh per load for the electric motor 

operating the tumbler and blower. 

 

To add them to the BA Benchmark and RESNET standard appliance set, we examined a 

calculation procedure already developed by NREL and compared that method with the measured 

dryer energy use from various studies around North America. This calculation is described here 

relative to the original equations. It is also included as an attached spreadsheet showing the 

automated procedures. 

 

2.2.1 Electric Clothes Dryers: End Use Studies 

 

Considering a variety of end-use metering projects, electric clothes dryer UEC values consume 

about 900 kWh/yr. Below we summarize the various studies and measurement. 

 

RECS (2001) 

Estimates within the EIA‘s Residential Energy Consumption Survey (RECS) for 2001 show 

average electric clothes dryer annual Unit Energy Consumption (UEC) to be 1,079 kWh per 

year.
11

         

Southern California Edison (1991) 

In the Southern California Edison, a sample of 92 monitored electric clothes dryers showed an 

average annual electricity consumption of 1,070 kWh (Smith et. al., 1991). 

 

BPA / ELCAP (1986) 

The Bonneville Power Administration sub-metered dry ELCAP data (Pratt et al., 1989) showed:  

Existing homes (n= 206): 918 kWh/yr. In a sample of 77 new homes the average was 

987 kWh/yr 

 

Progress Energy Florida (1999) 

Data on 145 homes with monitored electric clothes dryers  in 1999 showed an average 

consumption of 885 kWh (Parker, 2002). As the project also collected 15-minute data, the results 

produce information on daily load shape and also information on how dryer energy use varied 

with household size. 

 

Multi-Housing Laundry Association 

The Multi-Housing Laundry Association (MLA) estimates 3.3 kWh typically per electric clothes 

dryer load. Assuming 301 standard laundry loads per year, according to the RECS data for a 

three bedroom household, this estimate equates to about 993 kWh/year, which is comparable 

with typical monitoring estimates. 

 

                                                 
11

 http://www.eia.doe.gov/emeu/recs/recs2001/enduse2001/enduse2001.html 

http://www.eia.doe.gov/emeu/recs/recs2001/enduse2001/enduse2001.html
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Summary: 

 

The average of all five samples with no particular weighting is 1,005 kWh/yr. Thus, a standard 

BA Benchmark/RESNET standard electric clothes dryer‘s typical energy use should be in the 

range of 900 - 1100 kWh. 

 

Although clothes dryers are not an appliance which the U.S. DOE labels, ostensibly because of 

lack of significant product energy differentiation, technical evaluations suggest that clothes dryer 

energy use can be reduced (see for instance, Bassily and Colver, 2003). Of these, moisture 

sensing with enhanced clothes washer spin cycles to remove initial moisture loads are already in 

progress. Slight changes to current manufacture: 

 

• Improved drum seals to reduce dryer air leakage and shorten drying times 

• Increase the outlet flow rate without increasing the inlet flow rate. This has the effect of 

reducing the impact of drum leakage 

 

Major design changes 

 

• Heat exchanger from air outlet to inlet to allow downsizing of heating element and 

improved drying efficiency 

• Fully condensing clothes dryers 

• Heat pump clothes dryers 

  

It should be noted, however, that although clothes dryers do not have labels, their energy 

efficiency is in fact rated. The tested Energy Factor of the clothes dryers, reported as the lbs of 

dried clothes per kWh per cycle is available in a database on the California Energy Commission 

appliances website: 

 

http://www.energy.ca.gov/appliances/database/excel_based_files/Clothes_Dryers/  

 

2.2.2 Gas Clothes Dryers 

 

Gas clothes dryers use both natural gas for heat and electricity for the 0.375 hp tumbler motor 

and the blower and the 400 Watt hot-surface igniter. However, measured data on gas clothes 

dryer energy use is considerably more limited than for electric dryers. 

 

According to the Multi-Housing Laundry Association (MLA), a typical gas clothes dryer will use 

0.17 therms per drying cycle along with 0.5 kWh of tumbler and blower energy. 

 

http://www.mla-online.com/workback.htm 

      

Assuming 301 laundry loads per year on average, this equates to 150 kWh and 51 therms per 

year for gas clothes dryers. In agreement with this estimate, the American Gas Association’s 

2005 Fact Book shows that a gas clothes dryer will use an average of 51 therms per year. The 

only monitoring study we could locate was one completed in 1989 by Quantum Consulting 

(Smith et al., 1991). They found an average of 43 therms used per year in 92 monitored units in 

http://www.energy.ca.gov/appliances/database/excel_based_files/Clothes_Dryers/
http://www.mla-online.com/workback.htm
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California. Electricity use was not metered.  In the KEMA-XENERGY (2004) conditional 

demand study, gas dryers in California were estimated to use 31 therms and 100 kWh/year. Thus, 

the available data suggests that gas dryer energy use varies from 31 - 53 therms per year for a 

typical household and standard efficiency clothes dryer.  

 

Our default clothes dryer in the evaluation procedure uses 35 therms/year and 77 kWh/year to 

operate the drum, blower and igniter.  

 

2.2.3 Variation of Dryer Energy Use with Occupancy 

      

Realistically, within the HERS/Benchmark procedure, the variation in the use of the clothes 

dryer is linked with the number of laundry cycles done in the home. This, in turn, is linked to the 

number of bedrooms and the clothes washer characteristics. We use the same relationship used 

for clothes washers for the number of annual dryer cycles against bedrooms in the home. 

 

Loads per Year = 164+ 45.6*Nbr 

 

2.2.4 Procedure to Estimate Clothes Dryer Energy Use 

 

As described above, the procedure to estimate clothes dryer energy use is linked to the same 

procedure that estimates energy use of the clothes washer.  An adequate procedure for BA 

Benchmark and RESNET takes into account the various fuel uses as well as clothes moisture 

content and impact on dryer energy use. The NREL clothes dryer calculation procedure is based 

on one used by the U.S. DOE for the evaluation of dryer energy associated with clothes washer 

operation. The existing BA Benchmark procedure appears fully adequate and within our 

analysis.  Here we check to see that end-uses are being appropriately estimated. 

 

An acceptable method for RESNET should also consider how added loads with greater 

occupancy and the water contents of those clothes will affect energy use. A ―standard‖ dryer is 

also needed for the sake of comparison. This comparison is made so that we can estimate how 

the efficiency of the clothes washer spin cycle affects the energy use of the dryer. Based on the 

DOE test methods and pre 2008 clothes washers, the baseline dryer energy use is approximately 

900-1100 kWh/year. 

 

The calculation procedure here for clothes dryers is taken directly from the evaluation by 

(Eastment and Hendron, 2006) and is reproduced below. Energy-Guide labeling is not required 

for clothes dryers; however, a DOE test procedure for clothes dryers does exist for the purpose of 

determining clothes dryer compliance with federal appliance minimum efficiency regulations. In 

addition, clothes dryer energy use is dependent on moisture content of the wash load. This 

method incorporates equations used to determine the Modified Energy Factor (MEF) for clothes 

washers and equations from the DOE test procedure for clothes dryers in order to model any 

combination of clothes washer and clothes dryer in a coupled fashion. 

 

The method uses the tested Energy Factor of the clothes dryers, reported as the lbs of dried 

clothes per kWh per cycle. Data for individual units can be found in this database on the 

California Energy Commission appliances website: 
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http://www.energy.ca.gov/appliances/database/excel_based_files/Clothes_Dryers/ 

 

From this data, the standard minimum efficiency clothes dryer efficiency factor is 2.67 for 

natural gas dryers and 3.01 for electricity. For the 516 standard sized electric clothes dryers, the 

measured EF varied from 2.9 to 3.9. For the 456 gas dryers, the tested EF varied from 2.67 to 

3.44. Thus, for our proposed calculation method, we assume that the efficiency of clothes dryers 

is 3.01 lbs/kWh for electric and 2.67 lbs/kWh for natural gas.  

 

Natural gas dryers also have some electricity use for the operation of the blower and the rotating 

drum. Within the analysis done by Eastment and Hendron they estimated the electric energy use 

at 7% of total natural gas dryer energy use. Spot measurements by FSEC on a natural gas dryer 

verified these numbers as being approximately correct– about 300 Watt hours per cycle for these 

operations for a standard natural gas dryer. 

 

The procedure also includes an assessment of whether or not the clothes dryer has a moisture 

sensing termination. Those with this feature – most new models – will see consumption lower by 

about 12%.    

 

Annual clothes dryer energy use is calculated by equation 3 as follows: 

 

 kWh/yr = 12.5*(164+46.5*Nbr)*FU/EFdry*(CAPw/MEF - 

                             LER/392)/(0.2184*(CAPw*4.08+0.24)) Eqn. 3 

where: 

Nbr = Number of bedrooms in home 

FU = Field Utilization factor =1.18 for timer controls or 1.04 for moisture sensing 

EFdry = Efficiency Factor of clothes dryer (lbs dry clothes/kWh) from the CEC database 
12

 

or use following defaults:  3.01 for electric or 2.67 for natural gas 

CAPw = Capacity of clothes washer (ft
3
) from the manufacturer‘s data or the CEC database  

or the EPA Energy Star website 
13

 or use default of 2.874 ft
3
 

MEF = Modified Energy Factor of clothes washer from Energy Guide Label  

(default = 0.817) 

LER = Labeled Energy Rating of washer (kWh/yr) from Energy Guide Label  

(default = 704) 

 

We did make small modifications to the Eastment/Hendron procedure. These changes were to 

assume that the clothes dryer cycles per year is linked with clothes washer size while the weight 

of clothes washed remains a function of the number of bedrooms and is equal to that of a 

standard 3 cubic foot washer with a dry clothes weight of 7 lbs for a 3-bedroom home. 

Thisapproximation was made as there was no reliable data showing how clothes washed varies 

with clothes washer volume. 

    

                                                 
12

  http://www.energy.ca.gov/appliances/database/excel_based_files/  
13

  http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers 

http://www.energy.ca.gov/appliances/database/excel_based_files/Clothes_Dryers/
http://www.energy.ca.gov/appliances/database/excel_based_files/
http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers
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2.2.5 Comparison of Calculation to Measured Data 

 

It can be readily shown that the procedures recommended for ratings, including the statistical 

data and measured end-use, all agree that average electric clothes dryers energy use is about 850-

1100 kWh/yr with existing clothes washers. Similarly, annual gas dryer energy use varies from 

43 - 53 therms per year for a typical household. 

 

The above calculation procedure is recommended for computing energy use of clothes dryers. In 

addition, we have identified model characteristics denoting the following classifications which 

would not need further information: 

 

• Default electric clothes dryer 

- 3.01 lbs/kWh for electric 

• Default gas clothes dryer 

- 2.67 lbs/kWh-equiv for natural gas. 

     

Our default electric clothes dryer uses 970 kWh/year in baseline condition (FU=1.18) and 855 

kWh/year with moisture controlled cycle termination (FU=1.04). Similarly, the default natural 

gas clothes dryer uses 35 therms/year and 77 kWh/year; and with moisture controlled 

termination, it uses 31 therms/year and 67 kWh/year. 

 

    

3 Dishwashers 
    

Dishwashers have two impacts to household energy use: the energy used by the machine itself 

and associated impact on household hot water use. The energy use of the machine is not very 

large – typically 100 - 200 kWh per year depending on frequency of use and vintage. There have 

been few actual monitoring studies of dishwashers where the units were actually sub-metered. A 

notable exception was one study performed by the Bonneville Power Administration in 1988 

which measured an average consumption of 106 kWh per year in 70 monitored dishwashers 

(Pratt et al., 1989). However, other studies for the California Energy Commission (Kema-

Xenergy et al., 2004), LBNL (Wenzel et al., 1997) and A.D. Little (1998) estimated 84 kWh, 179 

kWh and 121 kWh, respectively. Of these, the LBNL study had the strongest basis as it 

considered measured per cycle energy use rather than reliance on regression methods.  

 

Recently, Hoak and Parker (2008) carefully estimated the machine energy of three widely 

differing efficiency levels of tested dishwashers and found consumption to vary from 0.9 to 0.35 

kWh/cycle with 0.9 kWh/cycle being typical of a standard unit. Assuming that annual cycles per 

year can easily vary from 100 – 400, this would indicate household energy use for dishwashers 

varying from 90 – 360 kWh with the average at around 200 kWh strongly depending on the 

typical number of annual dishwasher cycles. Currently, the LBNL Home Energy Saver software 

assumes 168 kWh per year from the dishwasher machine itself. However, associated impacts on 

hot water use can often be greater than the energy directly used by the dishwasher.  
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3.1 Dishwasher Energy Factor Calculation 

 

The energy-related rating of dishwashers is their Energy Factor. This is defined as 1/ kWh used 

for doing one load of dishes. Energy factor varies from 0.46 for standard dishwashers all the way 

up to 1.11 for very efficient models. Energy Star dishwashers have an EF of 0.65 or greater. 

 

Dishwashers have been the focus not only of an analysis of how to derive dishwasher 

performance from label data (Eastment and Hendron, 2004), but also of an assessment and 

monitoring of real world dishwasher energy use characteristics (Hoak et al., 2008). Although the 

Eastment/Hendron analytical method can be used to derive the components of dishwasher energy 

use, like the evaluation methods for clothes washers, it is complicated and difficult to apply, 

requiring extensive information both from the dishwasher energy guide label and from the EPA 

and/or CEC websites. Here, we propose a simpler method for the HERS/Benchmark procedures 

which utilizes that Energy Guide label or EF value for the dishwasher and the size of the 

dishwasher (standard vs. compact) to predict impacts on machine energy and associated hot 

water demand. 

 

The advantage is that the calculation is 

easily done and only needs the dishwasher 

EF or the Energy Guide label kWh which 

are easily available. The source is U.S. 

DOE's National Impact Assessment for 

dishwashers and analysis. See Figure 2 for 

a summary of the source data from the 

Hoak et al. (2008) analysis.
14

 

 

We suggest this simplification since data 

we have collected from real dishwashers 

suggests it will work well and be simpler 

in application for raters. 

 

 

 

3.1.1  Calculating Dishwasher Machine Energy 

 

The test Energy Factor (EF which is 1/kWh per cycle) and the label for dishwashers can be used 

to relate to the annual machine-only energy use separate from the external water heating. The 

assumed cycles per year is 215 in the DOE test procedure. 

 

     kWh/yr = 86.3+ 0.222 * 215 * 1/EF  

or : 

    kWh/yr = [(86.3 + 47.73 /EF)/215]*dWcpy Eqn. 4 

where: 

dWcpy = dishwasher cycles per year 

EF = Labeled dishwasher energy factor 

                                                 
14 http://fsec.ucf.edu/en/publications/pdf/FSEC-CR-1772-08.pdf 

 
Figure 2. Dishwasher impacts on energy use showing that the 

largest savings stem from reduced hot water use. 

http://fsec.ucf.edu/en/publications/pdf/FSEC-CR-1772-08.pdf
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(Source for this regression showing how internal machine power relates to total power is from 

the National Impact Assessment by DOE for Dishwashers). 

 

Dishwasher Cycles per year in the 2005 RECS analyzed is: 

 

dWcpy = 88.4 + 34.9*Nbr 

 
. reg DWcycyr bedrooms 

 

      Source |       SS       df       MS              Number of obs =    2480 

-------------+------------------------------           F(  1,  2478) =  112.48 

       Model |  2863098.28     1  2863098.28           Prob > F      =  0.0000 

    Residual |  63074734.5  2478   25453.888           R-squared     =  0.0434 

-------------+------------------------------           Adj R-squared =  0.0430 

       Total |  65937832.7  2479   26598.561           Root MSE      =  159.54 

 

------------------------------------------------------------------------------ 

       cycyr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    bedrooms |   34.89742   3.290427    10.61   0.000     28.44515    41.34969 

       _cons |   88.44945   10.55624     8.38   0.000     67.74949    109.1494 

----------------------------------------------------------------------------- 

 

We make a final adjustment to the cycles per year based on the capacity of the dishwasher. This 

modification is made since most households use dishwashers as soon as they approach being 

fully-loaded. 

 

dWcpy = (88.4 + 34.9*Nbr) * 12/dWcap 

where: 

dWcpy= Dishwasher cycles per year 

dWcap = Dishwasher place setting capacity; (Range 4 -16); Defaults = 12 settings for 

standard sized dishwashers and 6 place settings for compact dishwashers 

 

This estimates 193 cycles per year for a three bedroom home with a standard sized dishwasher, 

and the resulting general equation for the standard dishwasher (12 settings; EF=0.46) as a 

function of the number of bedrooms is: 

 

 dWash kWh/yr = 78 + 31*Nbr 

 

3.1.2  Estimating Dishwasher Hot Water Consumption 

 

Dishwashers, particularly the more efficient models, impact the hot water needed for each cycle 

as shown in the U.S. DOE data from its National Impact Assessment (NIA) for dishwashers. 

Thus, they have direct impacts on daily residential hot water consumption.
15

 The water use per 

                                                 
15

 http://www1.eere.energy.gov/buildings/appliance_standards/ 

http://www1.eere.energy.gov/buildings/appliance_standards/
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cycle equation used in the DOE Life Cycle Cost Analysis
16

 that underpins the latest revision to 

the federal dishwasher standard is as follows
17

: 

 

 Gallons per cycle (gpc) = 4.6415*(1/EF) - 1.9295 

where EF = labeled Energy Factor of the dishwasher 

 

So, the base dishwasher will use 8.035 gallons per cycle; a minimum Energy Star washer will 

use 5.3 gallons per cycle, and the best available dishwasher will use 2.3 gallons per cycle. The 

change to daily hot water use is then calculated as follows: 

 

 dWdelta_gpd = [(88.4+34.9*Nbr)*8.035 - (88.4+34.9*Nbr)* 

                                       12/dWcap* (4.6415*(1/EF) - 1.9295)]/365 Eqn. 5 

where      

dWcap= Dishwasher capacity in number of place settings (default = 12). 

 

Below we list EF and dWdelta_gpd for 3-bedroom homes for a dishwasher with 12 place 

settings: 

 

 EF    deltaGals 

 0.46    0.00 

 0.58    0.98 

 0.62    1.27 

 0.65    1.47 

 0.68    1.66 

 0.72    1.89 

 0.80    2.29 

 1.11    3.05 

 

3.2 Comparison of Method with Measured Dishwashers 

    

The default Dishwasher (EF= 0.46; setting =12) in a three bedroom home would show 179 

kWh/year for machine energy with 4.3 gallons of hot water used each day to supply the 

dishwasher. 

 

A minimum efficiency Energy Star dishwasher (EF=0.65; settings =12) would show 152 

kWh/year and a reduction in daily hot water use of 1.47 gallons. The various interactions are 

specified in the HERS/Benchmark spreadsheet. 

 

How does all this compare with real tested dishwashers?  For this comparison we have data from 

the Hoak and Parker assessment (2008).
18

 There, the measured electricity use and gallons 

consumed by the dishwashers was measured. 

 

                                                 
16

 Based on AHAM data showing historical relationship between total energy use (kWh/cycle) and total water use 

(gal/cycle) 
17

 Revised on 05/23/2011 based on better information. 
18

 http://fsec.ucf.edu/en/publications/pdf/FSEC-CR-1772-08.pdf 

http://fsec.ucf.edu/en/publications/pdf/FSEC-CR-1772-08.pdf
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Standard Kenmore 665-1658220 Dishwasher 

EF= 0.49, Measured gallons per cycle = 6.7; Measured electric use: 0.76 kWh/cycle (0.96 with 

resistance drying). 

Model prediction: 7.5 gallons per cycle, Predicted electric use: 0.85 kWh/cycle 

 

EnergyStar Kitchen Aid KUDSO11 Dishwasher 

EF= 0.68, Measured gallons per cycle = 5.0; Measured electric use: 0.66 kWh/cycle (0.86 with 

resistance drying). 

Model prediction: 5.3 gallons per cycle, Predicted electric use: 0.73 kWh/cycle 

 

Bosch XHX98M09 Lowest EF Dishwasher 

EF= 1.14, Measured gallons per cycle = 2.3; Measured electric use: 0.35 kWh/cycle (1.11 with 

heavy soiling).
19

 

Model prediction: 2.3 gallons per cycle, Predicted electric use: 0.60 kWh/cycle 

 

As seen, the model works well and should be adequate both for HERS and Benchmark purposes. 

 

 

4 Refrigerators 
 

Virtually all homes in the U.S. have refrigerators with an estimated 183 million units installed 

that consume one quad of energy in the national economy. Refrigerators are estimated by the 

RECS survey in 2005 at average electricity consumption in U.S. households of 1,360 kWh. Most 

modern refrigerators use less than 800 kWh/year, while those manufactured before 1980 often 

used more than 2,000 kWh per year.Thiscircumstance illustrates two facts regarding this 

important appliance: 

 

• A significant number of U.S. homes have more than one refrigerator 

• Many U.S. homes have older refrigerators 

 

The RECS data itself provides important information about both these facets.
20

 Fully 22% of all 

households have two of more refrigerators and 30% of detached single family homes have a 

second or even third refrigerator. Refrigerators also last a long time. In some 31% of households 

the most used refrigerator is older than ten years in age; in 6% of households the main 

refrigerator is more than 20 years old! The second refrigerator is typically smaller and older; 

fully 52% of the second refrigerators were older than ten years and 17% were older than twenty 

years. 

 

The most common refrigerator size and type is still the top freezer with a typical volume around 

19 cubic feet, but the larger side-by-side units with through-the-door ice and water are nearly as 

common. Generally, newer refrigerators– and particularly those in new homes– are of these 

types. 

            

                                                 
19

  This very high efficiency dishwasher does not have an electric resistance drying cycle, but is unusually sensitive 

to the level of dish soiling. 
20

 http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/detailed_tables2005.html 

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/detailed_tables2005.html
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RESNET standards currently show a standard refrigerator with an energy use of 775 kWh in its 

reference house. Energy Star refrigerators are at least 20% more efficient than standard types. 

For instance, a quick evaluation of available Energy Star refrigerators shows many models with 

an estimated energy use of 618 kWh in the popular side-by-side type of the common 25 cubic 

foot size. Consumption of refrigerators is highly dependent on size; the estimated maximum 

annual consumption of a 21.7 cubic foot side by side unit built to the most recent 2005 standards 

is 671 kWh (U.S. DOE, 2005).
21

 However, for this analysis we examined all 5,039 refrigerator-

freezers in the California Energy Commission 2009 database.
22

 The highest consuming currently 

manufactured unit, which had a volume of 30 cubic feet, had an estimated annual consumption 

of 790 kWh. Thus, this finding shows that the choice of the reference refrigerator at 775 kWh a 

year is a good indicator for typical energy use assuming that the RESNET standard wishes to 

reward the choice of both more efficient and smaller units. This specification also seems a 

reasonable choice for the BA Benchmark which wishes to compare consumption to a fictitious 

home built in the late 1990s. 

 

4.1 Reference Standard Refrigerator 

 

This report recommends that the reference standard for new refrigerators be updated to account 

for the number of occupants in the home, which according to 2005 RECS data impacts 

refrigerator size, and to account for the most recent minimum requirements for refrigerator 

efficiency.  To accomplish this task, the 2005 RECS data were regressed to determine the 

relationship between refrigerator size and the number of bedrooms with the following result: 

 

Frig size No.(y) vs. Number of bedrooms (x) 

SUMMARY OUTPUT   

    

Regression Statistics   

Multiple R 0.321481   

R Square 0.10335   

Adjusted R 

Square 

0.103145   

Standard Error 0.688125   

Observations 4378   
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 http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrigerator_report_1.pdf 
22

 http://www.energy.ca.gov/appliances/database/excel_based_files/Refrigeration/ 

http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrigerator_report_1.pdf
http://www.energy.ca.gov/appliances/database/excel_based_files/Refrigeration/
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  Coefficients Standard 

Error 

t Stat 

Intercept 2.850387 0.02925 97.45024 

X Variable 1 0.22248 0.009906 22.45858 

 

However, this regression result is in terms of a ―size number,‖ which contains a range of 

refrigerator volumes within it (see Figure 3), so some additional analysis is necessary to get to an 

equation that can be used to define refrigerators in terms of volume (ft
3
) and number of 

bedrooms (Nbr). 

 

To aid in this analysis a histogram of the 

refrigerator size categories was 

developed, as shown in Figure 3.  These 

data were then used in conjunction with 

the regression data to revise the regression 

equation in terms of refrigerator volume 

instead of ―size number.‖  First, the 

original regression equation was solved 

using the average number of bedrooms in 

the sample of 2.8.  This equation yielded 

an average refrigerator ―size number‖ of 

3.473.  The weighted average refrigerator 

size of 18.4 ft
3
 is shown in Figure 3.  

However, since average new refrigerators 

are considerably larger than the stock of existing refrigerators in the U.S. (AHAM‘s shipment 

weighted average size was 22.3 cubic feet in 2003), we choose to use that relationship to alter the 

above equations so as not to bias against newer units which tend to be larger.
23

  This volume was 

divided by this size number (3.473) to determine a conversion factor that could be applied to 

modify the coefficients of the original regression equation.  This modification resulted in the 

following equation for refrigerator size as a function of the number of bedrooms: 

 

 frigVol (ft
3
) = 18.3 + 1.43*Nbr 

 

The current 10 CFR 430.32 equation for class 7 refrigerators (side-by-side) with through door ice 

is as follows: 

 

kWh/yr = 10.1*AV + 406 

where: 

AV = adjusted volume = (refrigerator compartment volume) + 1.63*(freezer compartment 

volume), where the refrigerator compartment = 3/5 of the total volume and the freezer 

compartment = 2/5 of the total volume. 

 

Coupling the above equation for refrigerator volume (frigVol) with the 10 CFR 430.32 equation 

for annual energy use, one obtains the following standard refrigerator annual energy use as a 

function of the number of bedrooms in the home: 

                                                 
23

 Rosenstock, Steve, April 2005. Edison Electric Institute: http://www.peaklma.com/files/public/rosenstockeei.ppt   

 
Figure 3.  Histogram of refrigerator size categories from 2005 

RECS data for existing U.S. homes 

http://www.peaklma.com/files/public/rosenstockeei.ppt
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Nbr cu.ft kWh/yr 

1 19.7 655 

2 21.2 674 

3 22.6 692 

4 24.0 710 

5 25.5 728 

6 26.9 746 

 

These data can then be represented using the following general equation for the standard 

refrigerator annual energy use: 

 

 frig (kWh/yr) = 637.4 + 18.1*Nbr 

 

4.2 Rating New Refrigerators 

 

Since the EnergyGuide label for refrigerators is both widely available and typically visible, it 

remains the recommended procedure both for RESNET and for the BA Benchmark procedures 

to input the energy use of the rated home based on the EnergyGuide label for the evaluated or 

rated home. If the guide is not available, the annual kWh is typically available from the data in 

the CEC website. 

 

We also conducted an analysis of the minimum Energy Star models now available for 

refrigerators of various size classes based on evaluating the EPA Energy Star Refrigerator 

website: 

 

Size   (Adjusted cubic feet)     Annual kWh   

Small  (17 - 18 ft3)                     433                     

Medium (21-22 ft3)                    443                    

Large   (25-26 ft3)                      532                 

Extra Large (30-31 ft3)               571                       

 

Even though this data is made available, it is suggested that the EnergyGuide label still be used 

for estimating the energy use of refrigerators in the evaluated home unless the home‘s 

refrigerator has not yet been chosen. 

 

It is also important to realize that since refrigerator efficiency has changed so dramatically over 

time– and many homes with second refrigerators are an older vintage–  it is useful to suggest 

methods to estimate their energy use if no other label data is available. 

 

The 1993 National Appliance Energy Conservation Act (NAECA) standard for minimum 

refrigerator efficiency provides a ready method to accomplish this estimate (U.S. DOE, 1995). 

We break the estimated annual kWh into refrigerator type based on NAECA‘s established 

minimum levels of performance: 
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4.3  Estimating Annual Refrigerator kWh for Older Units  

 

Annual energy use may be estimated for existing refrigerators based on 1993 NAECA 

procedures. 

 Type  Annual kWh 

 Top-freezer:         [16.0*AV + 355] * VR 

 w/TTD [17.6*AV + 391] * VR 

 Bottom-freezer:    [16.6*AV + 367] * VR 

 Side-by-Side:       [11.8*AV + 501] * VR 

  w/ TTD [16.3*AV + 527] * VR 

 

where:  

AV = Adjusted volume = (refrigerator compartment volume) + 1.63*(freezer 

compartment volume) 

            VR= Vintage Ratio 

            TTD = thru-the-door-ice feature 

 

Increase consumption by 5% for standard models without TDI but with automatic ice maker. 

Fortunately, available data suggests how the 1993 NAECA standard can be used to estimate 

energy from older refrigerators of the same types. 

 

Refrigerator Vintage Vintage Ratio 

1972 or before  2.50 

1980  1.82 

1984    1.64 

1988         1.39 

1990  1.30 

1993+  1.00 

 

Source: E-Source, Residential Appliances, Boulder, CO, 1995, p. 4.4.1- 4.5.2 

 

 

5 Range and Oven Energy Use 

 

Cooking is generally an energy end use in every American household, albeit one that has been 

trending downward as cooking at home has receded over the last two decades. Cooking uses two 

primary fuels: gas and electricity. In single family homes in the U.S., electric range/ovens 

account for about 62% of the population; the rest use natural gas or propane.
24

 

 

Below, we show the measured range kWh from the Progress Energy sub-metered data taken in 

Central Florida. There were some limitations that should be understood relative to the 

monitoring. The study only measured a single range. If there was a counter-top island range that 

was separate or an "other side of the kitchen" oven, the energy use of only one of these 

appliances was typically recorded. That means that the average numbers are a likely somewhat 

low, although this circumstance was not that common. Also, the energy use of other kitchen 
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 Source: http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc9homeappliance/pdf/alltables.pdf 

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc9homeappliance/pdf/alltables.pdf
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appliances, such as microwave and toaster ovens, was not recorded and is not part of this 

characterization. 

 
. sum rangekwh 

 

    Variable |     Obs        Mean   Std. Dev.       Min        Max 

-------------+----------------------------------------------------- 

    rangekwh |      67    309.8687   218.5101       87.6     1401.6 

 

Average range annual electricity was 310 kWh in the 67 homes which were measured. This 

average is likely somewhat low. Another monitoring study by Quantum Consulting of 92 

monitored households in California in 1989 found 385 kWh as the average (Smith et al., 1991).  

 

As part of our evaluation, we examined sources for cooking energy use data. Within the ELCAP 

data (Pratt et. al.), taken in 1984-85 in the Pacific Northwest, a sample of 206 homes they found 

range/over energy use to average 510 kWh/year. Those same data did not correlate cooking 

energy use with bedrooms, but they did summarize consumption with occupancy: 

 

     Occupants  Annual kWh 

 1    350 (n=9) 

 2  453 (n=83) 

 3  517 (n=31) 

 4  526 (n=47) 

 5+  695 (n=26) 

       

It might be noted that in most recent census data, we find that the average number occupants 

tends to be lower than bedrooms by about 0.5 occupants.  

 

We also examined a monitoring study done by Pacific Gas and Electric in California (Brodsky, 

1987) in which 199 range and range/ovens were monitored from 1985-1986. Total cooking 

energy use averaged 656 kWh/yr. The study noted that many households had both ovens and 

range tops and range tops with ovens. However, in this study these appliances were metered 

separately with the following average UECs: Oven and Range/Oven: (334 kWh) and range top 

(322 kWh). 

      

Examining the RECS data, the EIA shows oven/range energy use averaging 440 kWh/yr. 

Although this number is derived by the regression procedures within the RECS analysis and thus 

is less reliable than the other end-use studies, it still aligns well with the ranges observed in the 

monitoring studies. 

 

http://www.eia.doe.gov/emeu/recs/recs2001/enduse2001/enduse2001.html 

 

We also examined the RECS data to see how frequency of oven use varied with number of 

bedrooms and found the following: 

 

 RECS OvenUses = 140 + 16.5 * Nbr.    

       

http://www.eia.doe.gov/emeu/recs/recs2001/enduse2001/enduse2001.html
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Assuming 2.8 bedrooms and 440 kWh/yr as the standard, the equation for range energy use as a 

function of the number of bedrooms becomes:   

 

 Range (kWh/yr) = 331 + 39 * Nbr = 448 kWh/y for 3 bedrooms. 

 

5.1 Gas Ranges 

 

There are few studies that can be located on the energy use of gas ranges. One measurement 

study by Quantum Consulting (EPRI, 1991) of 92 monitored households in California in 1989 

found 32 therms per year was the average consumption for gas ranges. The recent KEMA-

XENERGY evaluation for CEC (2004) estimated 43 therms per year for cooking and the LBNL 

Energy Source Data Book (1997) estimated 56 therms. However, the later estimates are perhaps 

less compelling in that they are based on conditional demand estimates. 

         

Another analysis by RMI estimated that a natural gas range would use 30 therms of natural gas 

per year. However, the oven part of the range also uses a 350 Watt electric resistance hot-surface 

igniter so that the two average hours of oven use per week will also use 0.7 kWh of electricity. 

From a heat transfer standpoint, gas ranges are inherently less efficient than electric resistance 

elements. Tests described by LBNL (1998) in a comprehensive assessment of cooking 

technologies, showed a 74% efficiency in transferring heat for resistance coils/halogen elements 

vs. about 40% for natural gas burners. Induction electric ranges have showed approximately a 

90% efficiency in the similar tests. 

 

The same detailed analysis conducted by LBNL (1998) suggests that the ―glo‖ ignition in gas 

ovens consumes an average of about 48 kWh/year for standard operation.
25

 Within our analysis, 

we assume that gas ranges experience the same frequency of use as electric ranges but that their 

consumption is about 1 kilowatt hour per therm to yield similar values that are consistent with 

the LBNL work. 

    

5.2 Cooking Trends and Occupancy 

 

Home cooking has been declining (eating out more often) and likely microwave use and toaster 

oven use has taken away a part of this consumption. Thus, it is not surprising that the older 

studies identified above show the highest consumption levels.
26

 

 

We further examined the data to see how cooking varied with occupancy using the Central 

Florida data. However, we didn't suggest much in the way of explanatory variables to explain 

cooking energy use. Conditioned floor area was not significant. The bedrooms variable was as 

robust as occupants in the little explanatory power in the examined relationship: 
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  http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/cookgtsd.pdf; See Table 1.13. 
26

 ―Cooking Trends: Are We Really Becoming a Fast Food Country in the United States,‖ DOE/EIA, 

http://www.eia.doe.gov/emeu/recs/cookingtrends/cooking.html 

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/cookgtsd.pdf
http://www.eia.doe.gov/emeu/recs/cookingtrends/cooking.html
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. regress rangekwh bedrooms 

 

      Source |       SS       df       MS              Number of obs =      67 

-------------+------------------------------           F(  1,    65) =    3.53 

       Model |  162149.489     1  162149.489           Prob > F      =  0.0649 

    Residual |  2989131.51    65  45986.6386           R-squared     =  0.0515 

-------------+------------------------------           Adj R-squared =  0.0369 

       Total |  3151281.00    66  47746.6818           Root MSE      =  214.44 

 

------------------------------------------------------------------------------ 

    rangekwh |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    bedrooms |   43.24213   23.02847     1.88   0.065    -2.748904    89.23317 

       _cons |   202.7314   62.78305     3.23   0.002       77.345    328.1178 

------------------------------------------------------------------------------ 

 

Interestingly, once occupants were accounted for, larger houses had a negative relationship to 

cooking energy. One interpretation might be that higher income households in big houses eat out 

more often. Again, it is important to note that these numbers are probably about 30% low (see 

the RECS data above). 

 

5.3 Calculation Procedure for HERS/Benchmark for Cooking Energy 

 

Based on the above data, our suggested relationship for annual electricity for range/oven cooking 

is based on the frequency of cooking with household size based on the RECS data: 

 

Electric Range kWh = 331 + 39*Nbr  

 

5.3.1 Natural Gas 

 

Preserving the same ratio of fixed to occupancy related consumption for natural gas cooking 

based on the Quantum study of measured consumption for gas ranges (consider an approximate 

average target of 30 therms for a three bedroom home) and considering the fundamental 

efficiency of the heat transfer process (74% for electric standard vs. 40% for gas) suggests the 

following for annual energy use: 

 

Gas Range therms  =  22.6 + 2.7 *Nbr 

Gas Range electric kWh =   22.6 + 2.7*Nbr 

 

Note that we also account for electricity use by the natural gas range. Thus, in lieu of more 

detailed data, we propose the above relationships for cooking energy end uses, both for the BA 

Benchmark and for the RESNET standard. 

 

5.3.2 More Efficient Cooking Technologies 

 

There is now a more efficient electric cooking technology. Induction ranges, which are now 

widely available, have measured efficiencies with heat transfer efficiency about 17% better than 

an electric resistance or hot surface range as seen in the LBNL study.
27

 

                                                 
27

  See also: http://theinductionsite.com/ 

http://theinductionsite.com/
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However, in application, only about half of this efficiency improvement can be expected since 

cooking times/ boiling rates are not always regulated precisely and the oven portion of an 

induction range is not affected by the improvements to the burner efficiency.  

 

Similar, convection ovens have been measured to reduce oven cooking energy by about 25%-

30%, although the degree to which this feature is used and the fact that the oven is used for only 

about half of cooking use, suggests that a convection oven can only be expected to reduce 

cooking energy use by about 5%.
28

 This estimate also aligns with that in the LBNL study (1998). 

This advantage for convection ovens applies to either natural gas or electric ranges. 

  

There is also at least one manufacturer of gas/propane ranges that uses solid state ignition for the 

oven and thus avoids the energy use of the electric resistance igniters. 

     

5.4 Recommended Calculation Procedure for Rated homes 

 

5.4.1 Electric Cooking 

 

 Electric Range kWh = BEF * OEF * (331 + 39Nbr) 

where: 

 BEF= Burner energy factor = 0.91 for induction ranges and 1.0 otherwise. 

 OEF = Oven energy factor = 0.95 for convection types and 1.0 otherwise 

 Nbr = Number of bedrooms 

 

5.4.2 Gas Cooking 

 

 Gas Range therms = OEF*(22.6 + 2.7*Nbr) 

 Gas Range electric kWh = 22.6 + 2.7*Nbr 

where: 

 OEF = Oven energy factor = 0.95 for convection types and 1.0 otherwise 

 

 

6 Television Energy Use 
 

There are about 275 million TVs currently in use in the U.S., consuming over 50 billion kWh of 

energy each year — or 4 percent of all households' electricity use. In 2001, there were 2.3 

televisions per household, with 20% of those being big screen TVs. By 2005, this number had 

grown to about 2.5 TVs per household and 2.8 in single family detached homes. Not 

surprisingly, the number of big screen TVs has also risen -- 38% of single family homes had a 

big screen TV in 2005. In 2009, the number is certain to be higher and growing rapidly with the 

saturation of large digital televisions. 
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 CPUC, ―End Use and Technology Specific Data,‖ California Energy Commission, 

http://docs.cpuc.ca.gov/published/Report/30174.htm. Consumer data on measured saving of convection ovens: 

http://www.sfgate.com/cgi-bin/article.cgi?file=/c/a/2003/11/19/FDGFQ33E3N1.DTL 

http://docs.cpuc.ca.gov/published/Report/30174.htm.
http://www.sfgate.com/cgi-bin/article.cgi?file=/c/a/2003/11/19/FDGFQ33E3N1.DTL
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6.1 Televisions per Household 

 

The regression of TVs against bedrooms within the RECS 2005 data shows interesting trends. It 

only explains 17% of the variation, but the t-statistic is hugely significant – meaning the 

coefficient of a television for every two bedrooms is a powerful influence on the average of 

televisions found in households in the United States. The essential relationship from the RECS 

data: 

 

Typical TVs per household = 1.1 + 0.51 (Bedrooms) [n= 4330] 

 

Source regression: 
 
. reg tvcolor bedrooms 

 

      Source |       SS       df       MS              Number of obs =    4382 

-------------+------------------------------           F(  1,  4380) =  894.44 

       Model |  1271.34033     1  1271.34033           Prob > F      =  0.0000 

    Residual |  6225.63389  4380   1.4213776           R-squared     =  0.1696 

-------------+------------------------------           Adj R-squared =  0.1694 

       Total |  7496.97421  4381  1.71124725           Root MSE      =  1.1922 

 

------------------------------------------------------------------------------ 

     tvcolor |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    bedrooms |   .5128369   .0171476    29.91   0.000     .4792189    .5464548 

       _cons |   1.095679   .0506335    21.64   0.000     .9964112    1.194946 

------------------------------------------------------------------------------ 

   

6.2 Issues with Energy Rating for Televisions 

 

While, televisions comprise an estimated 4% of growing household energy use, there are some 

significant issues associated with rating televisions within HERS ratings.   TV energy use is tied 

to more factors than the number of sets in the residence.  First, the fact that a second (or third, 

etc.) TV exists in a home does not mean that it will be used as often as the primary television.  

Second, the primary TV set will likely be larger and use more power than second or third TVs.  

Both of these facts are revealed in recent research on home electronics energy use by Roth and 

McKenney (2007).  The core data for analog TVs from this study is as follows: 

 

TV: hrs/day avgSize activeW stdbyW 

primary 7.1 30 115 4 

secondary 4.3 24 93 4 

third 3.3 21 79 4 

forth 3.2 21 78 4 

fifth 2.0 18 67 4 

sixth 1.2 18 67 4 
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These data clearly show that the primary TV is both larger and is used more often than secondary 

and following TVs, confounding a simplified rating methodology that would use average annual 

energy consumption for each TV.  Fortunately, these data are well characterized by an equation 

that is based on the logarithm (base 10) of 

the TV numbers in the home. 

 

Figure 4 presents the results from a 

regression analysis of these data showing 

that viewing hours for multiple TVs in 

homes are well correlated to the 

logarithm of the TV number.  For these 

purposes TVs are listed from their largest 

screen size to their smallest screen size 

and within a given screen size from their 

largest active wattage to their smallest 

active wattage.  As seen in Figure 4, the 

correlation coefficient (R Square) for the 

resulting regression is reasonable.  Thus, 

we recommend that this procedure for 

ordering multiple TVs in homes and the 

resulting regression equation be used to determine the number of hours that multiple TVs will be 

used in homes. 

onHours = 6.876 – 7.054*log(10)TV# 

or 0.5 hours, whichever is greater 

 

The source data also show that TV size and active power are related to TV order.  The active 

power data can be correlated to the logarithm of the TV number.  However, prior to performing 

such a regression, it is useful to note that the multiple TV data (Roth and McKenney, 2007) are 

for analog TVs.  The authors are not aware of a corresponding set of data for digital TVs.  While 

digital TVs are not likely to exhibit a significantly different pattern of use with respect to 

viewing hours, their size and power demand can be significantly larger than for analog TVs.  

Roth, et al. (2008) report average unit energy consumption (UEC) for analog TVs at 216 kWh/yr 

per unit with a saturation of 2.05 analog TVs per home.  For digital TVs, they report UEC at 392 

kWh/yr per unit with a saturation of 0.35 TVs per home.  Thus, total average energy 

consumption for homes becomes 580 kWh per year with a saturation of 2.4 TVs per home, or an 

average use of 242 kWh/yr per TV set.  

 

This annual average TV energy use value is used along with the viewing hour data to modify the 

active power demand such that the TV energy use value for a typical 3-bedroom home with  

(1.1 + 0.51*Nbr = 2.63) TVs equals 636 kWh/year or 242 kWh/yr per TV set.  To accomplish 

this equivalency requires that the active power wattage in the above list be increased by 10% per 

TV set.  This adjustment results in a correlation for the active wattage of standard TVs as 

follows: 

actWattsSTD = 124 – 69.1*log(10)TV# 

or 50 watts, whichever is less 

 

 
Figure 4.  Showing the regression fit of TV viewing hours as a 

function of the logarithm of primary and secondary TVs in 

homes. 
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The above regression results a correlation coefficient (adjusted R Square) of 0.975.  Thus, for the 

first TV, the active wattage would be 124 watts and the daily viewing time would be 6.88 hours.  

We propose that the standard TV standby power be maintained as found by Roth and McKenney 

(2007) at 4 watts.  Thus, the standard primary TV would consume (124 watts * 6.88 hours + 4 

watts * 17.12 hours =) 922 watt-hours/day or 336 kWh/year. 

 

6.3 Calculation Procedure for Television Energy Use 

 

EPA has largely done the work for ratings and the eventual FTC label that will be seen on all 

television sets within a year. Within the procedure, the standby (non-active) wattage is measured 

including the active wattage when in use. These values are tested for each television and will be 

published on the FTC label. These data are already available within the EPA website for 

EnergyStar compliant televisions. The current spreadsheet can be downloaded here: 

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_

code=TV 

 

It is important to note that the annual energy use values provided in the EPA tables are derived 

assuming five hours of active viewing and 19 hours of standby wattage.  This approximation 

differs from the procedure described above but the 5 hours is virtually identical to the viewing 

hour average that one would obtain from the first 3 TV‘s using the proposed regression 

equations.  

 

The average television energy use for standard cathode ray tube (CRT) televisions comes from 

an evaluation done for EPA by the Cadmus Group in 2008:
29

  This data set is useful in 

determining the average active wattage of TVs as a function of diagonal screen size.  A 

regression analysis was conducted to make this determination with the following result: 

 

actWattsTV = 9.21 + 1.17*diag + 0.110*diag
2
 

 

This equation may be used to determine the active wattage of TVs that are not otherwise labeled.  

Additionally, a standby wattage of four watts should be used as the default for TVs that are not 

labeled.  The active and standby wattage is then used in combination with the viewing hours 

equation to determine annual TV energy use on a unit-by-unit basis, where TVs are ordered by 

decreasing size and active wattage as described above. 

 

Calculations used to determine annual energy use for either the HERS Reference or BA 

Benchmark home and the Rated or BA Prototype homes are as follows. 

 

6.3.1 HERS Reference or BA Benchmark Home 

 

The Reference or Benchmark home annual TV energy use is determined based on the following: 

 

actWattsSTD = 124 – 69.1*log(10)TV# 

or 50 watts, whichever is greater 

offWattsSTD = 4 

                                                 
29

 http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/tv_vcr/Dataset.xls 

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=TV
http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=TV
http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/tv_vcr/Dataset.xls
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onHours = 6.876 – 7.054*log(10)TV# 

or 0.5 hours, whichever is greater 

offHours = 24 – onHours 

 

TVkWh/yr = Σ(actWattsSTD,i *onHours,i  +  offWattsSTD,i *offHours,i )  

+ p*(actWattsSTD,m *onHours,m  +  offWattsSTD,m *offHours,m) Eqn. 6 

      where:  

i = 1, n = TV#  

n = INT(1.1 + 0.51*Nbr) 

o = 1.1 + 0.51*Nbr  

p = o – n (a fractional TV) 

m = n +1 = TV# for partial TV 

 

For reference homes with less than 12 bedrooms, the following table may be used to determine 

the Reference home annual TV energy use: 

 

Nbr TVkWh/yr Nbr TVkWh/yr 

1 463 7 858 

2 561 8 898 

3 636 9 933 

4 705 10 966 

5 762 11 994 

6 814 12 1020 

 

6.3.2 HERS Rated or BA Prototype Home: 

 

For the Rated or Prototype home, TV energy use is determined based on the following protocol. 

 

1) No TV information available – same annual TV energy use as the Reference home 

2) EPA Label information
30

 or number and size of TVs available 

a. TVs shall be ordered in a list to determine TV# by decreasing screen size and 

within the same screen size by decreasing active wattage 

b. The number of Rated TVs in the Rated home shall be a minimum of 1.1 + 

0.51*Nbr 

c. If number of Rated TVs is less than 1.1 + 0.51*Nbr, then remaining TVs (i.e.  

1.1 +0.51*Nbr minus number of Rated TVs), including partial TVs, shall be 

included in the ordered TV list calculated as standard TVs using the following 

formula: 

actWattsSTD = 124 – 69.1*log(10)TV# 

or 50 watts, whichever is greater 

d. If number of TVs is greater than 1.1 + 0.51*Nbr, then each TV shall be included 

in the calculation of Rated home annual TV energy use 

e. If label information is available, active wattage and standby wattage as reported 
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 http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=TV 

 

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=TV
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on label shall be used for the calculation of annual TV energy use 

f. If label information is not available, standby wattage shall be 4 watts and active 

wattage shall be determined from the diagonal screen size using the following 

formula: 

actWattsTV = 9.21 + 1.17*diag + 0.110*diag
2
 

g. Viewing hours shall be determined on a unit-by-unit basis using the following 

formula: 

onHours = 6.876 – 7.054*log(10)TV# 

or 0.5 hours, whichever is greater 

h. Total annual Rated home TV energy use shall be calculated using the following 

formula:   

TVkWh/yr = Σ(actWattsTV,i *onHours,i  +  offWattsTV,i *offHours,i )  

+ p*(actWattsSTD,m *onHours,m  +  offWattsSTD,m *offHours,m) 

where: 

i = 1, n = TV#  

n = INT(1.1 + 0.51*Nbr) or total number of Rated TVs, whichever is greater 

o = 1.1 + 0.51*Nbr or total number of Rated TVs, whichever is greater 

p = o – n (a fractional TV) 

m = n +1 = TV# for partial TV 

 

 

7 Ceiling Fans 

  

The saturation of ceiling fans in U.S. households has been quickly growing over the last decade. 

In 2005, there were 111.1 million residential households in the United States; 77.2 million of 

these households or 69 percent had ceiling fans.
31

 This 2005 saturation represents a 27% percent 

increase over the 61.0 million households with ceiling fans that was reported in the1997 RECS.  

In houses with ceiling fans, there was an average of 2.9 ceiling fans per household and 2.0 

ceiling fans for all U.S. households. Not surprisingly, the saturation of ceiling fans varied 

strongly by climatic region for the houses they were used. The South (3.2 fans) and Midwest 

(2.8) census regions had a higher percentage of ceiling fans than the Northeast (2.6) or West 

(2.4) census regions. 

 

From the various EIA summaries, ceiling fans appear an important end-use energy load in 

American houses. According to the TIAX study, one of the largest categories of miscellaneous 

electricity loads (MELs) was ceiling fans. The study also made reasonable assumptions about the 

average power use of the fans, the fact that ownership is strongly regional and that use varies 

with the cooling season. Nationwide, the study estimates that each ceiling fan in a home will add 

about 84 kWh per year. However, the study correctly posits that consumption varies regionally 

so that the UEC is only 20 kWh/year in New England versus 123 kWh in the South Atlantic 

region.            

 

However, in this analysis we seek to address several issues associated with ceiling fans in order 

to improve the calculation methodology within HERS and the BA Benchmark process. In 

                                                 
31

 http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc9homeappliance/pdf/alltables.pdf 

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc9homeappliance/pdf/alltables.pdf
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particular, we seek a characterization of how many ceiling fans are typically installed in homes. 

It is also vital to know how the weather in various locations will influence ceiling fan energy use 

and thus potential savings around the U.S. 

      

7.1 Power Use of Ceiling Fans 

 

The TIAX study surveyed several studies of ceiling fan speeds and power consumption in both 

California and Florida. They concluded that the typical speed was medium (ceiling fans typically 

have low, medium and high speeds). They also concluded that the typical operating wattage was 

about 35 Watts. 

 

In the past, FSEC has measured ceiling fan power in a number of studies. Low speed tends to be 

about 10- 20 Watts, medium speed about 25-45 Watts and high speed about 75-95 Watts (Sonne 

and Parker, 1998). As concluded by TIAX, we agree that medium speed is a good assumption for 

the calculations. However, there are some differences in fan efficiencies. 

 

A survey of all non-Energy Star ceiling fans, available from Ecos Consulting, showed an average 

medium speed power consumption of 42.6 Watts at a 3,000 cfm flow rate (Fairey, 2005). The 

power consumption of Energy Star models is at least 20% lower than that value but sometimes 

as much as 40% lower depending on the motor/fan efficiency. 

   

7.2 Hours of Use of Ceiling Fans 

     

In an FSEC study of 400 Florida home in the 1990s, the mean average use of ceiling fans was 

13.5 hours on weekdays and 14.2 hours on weekends (James et al., 1996). Occupants in over 

one-third of these homes reported leaving their fans on 24 hours per day. For homes with fans, 

the average weekday use was 39.2 fan hours. When averaged over the year, we found 13.7 hours 

per day for fans that were used but only about ten hours per day for all fans installed. 

 

It is also important to account for the fact that the hours that ceilings are used will obviously vary 

with the climate and likely seasonally as well. With limited data, we attempt to describe methods 

to show how ceiling fan use varies with time of year and with weather in a geographic location. 

    

7.3 Load Shape 

    

A larger utility survey (n=371) showed an average of 4.3 ceiling fans in each Florida house with 

a mean average use of 13.5 hours on weekdays and 14.2 hours on weekends. Over one-third of 

occupants in these homes reported leaving their fans on 24 hours per day. 

 

Field monitoring was done in two case studies where motor loggers were used to collect data on 

ceiling fan operation in two very different households. Each home had five fans with data 

collected over a full year at each home. Average fan use was 12.6 hours/day in one house and 2.7 

hours/day in the other where users were very diligent about turning off fans in unoccupied rooms 

(Sonne and Parker, 1998). Figure 5 and 6 show the two monitored consumption profiles over an 

entire year. 
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We found that fans were used most in occupied bedrooms (8.6 hours per day) and to a lesser 

extent in the living room (2.3 hours per day) and the study of the home (1.2 hours per day). The 

resulting profiles clearly showed that the bedroom fan was used most at night. 

 

Given the commonly increased use of ceiling fans in nighttime hours, it is logical to assume that 

the largest use will occur at night but that, on average, there also will be significant daytime use 

in living and family rooms. The proposed schedule is based on this premise with 60% of 

maximum available fan energy use occurring at night and 25% occurring during the day.  The 

resulting data are given in Table 1, where the sum of the total daily use fractions equals 10.5 full-

load fan hours per day per fan. This estimate is in close agreement with the TIAX evaluation 

(Roth et al., 2008) of various sources and the weighted assessment by FSEC (James et al., 1996) 

which showed approximately ten hours per day in households with ceiling fans when total hours 

are divided by the number of installed fans.  The proposed profile of the on-time distribution data 

are plotted in Figure 7. 

 

In the TIAX report, a proxy for ceiling fan days was determined to be days in which the average 

air temperature was 70 F or greater. Given that Cooling Degree Days are computed at a 65 F 

base, this reading seems high. However, based on observation of ceiling fan use in Florida, there 

is a ceiling fan ―season‖ where behavior does not vary substantially from day to day but rather 

from month to month as the longer term temperatures continue to cool. One simplification we 

propose might be to only assume ceiling fans run in months in which the average temperature is 

greater than 63 F but that they are then available on all days in that month. This assumption 

would automatically capture variations both in climate and seasonality. 

 

 
Figure 5.  James home ceiling fan load profile 

 

 
Figure 6. Signore home ceiling fan load profile 
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For instance, in Tampa, FL, ceiling fans would be assumed to operate from March - November 

inclusive (275 days with a total of 3,712 fan hours per fan, leading to an annual consumption of 

130 kWh/fan. However, in Denver, CO, the fan season would be June - August, 93 days and 

1255 fan hours and 44 kWh/fan. At the extremes, Miami, FL would have a year-round ceiling 

fan season (365 days and 172 kWh/fan), while International Falls, MN would only have a ceiling 

fan season for July and August (62 days and 30 kWh). In general, the range of  estimates using 

this procedure are in close agreement with the assumptions also made in the TIAX study. 

  

7.4 Influence of Ceiling Fan Use on Thermostat Setting 

 

Homeowner-reported summer thermostat settings were approximately the same for homes with 

and without ceiling fans. The smaller sample of measured interior temperatures for July again 

showed no correlation between temperatures and ceiling fan availability or use. One large study 

of 400 homes in Florida (James et al., 1996) showed the poor relation found between ceiling fan 

use and reported and measured interior temperatures. Comparing households that meet the 

Florida Energy Code requirement with one ceiling fan in each bedroom did show a slight (0.5 
o
F) 

increase in thermostat set point. 

 

Thus, for homes which have a ceiling fan located in each bedroom, the available evidence would 

suggest a 0.5 F increase in the implemented cooling thermostat set point. However, as noted in 

the same paper, this level of thermostat increase often will not offset the energy use of the ceiling 

fans themselves along with their internal heat generation. 

 

7.5 Methods to Reduce Ceiling Fan Energy Use 

 

More energy-efficient Energy Star ceiling fans are now on the market. These fans use at least 

20% less electricity to provide the same airflow of standard fans. Based on analysis of currently 

available models as made available by the U.S. EPA, we can estimate example ceiling 

performance to be as follows: 

Table 1. Ceiling Fan Schedule 

Hour 
Use 

Fraction 
Hour 

Use 

Fraction 

1 0.60 13 0.25 

2 0.60 14 0.25 

3 0.60 15 0.25 

4 0.60 16 0.25 

5 0.60 17 0.25 

6 0.60 18 0.25 

7 0.60 19 0.60 

8 0.25 20 0.60 

9 0.25 21 0.60 

10 0.25 22 0.60 

11 0.25 23 0.60 

12 0.25 14 0.60 

 

 
FFigure 7. Proposed schedule for ceiling fan operation. 
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Non-Energy Star 

 

High                   5,000 cfm, 80 W,  62.5 cfm/W 

Medium             3,000 cfm, 45 W,  67 cfm/W 

Low                   1,700 cfm, 20 W,  85 cfm/W 

 

Energy Star (20% better than min. values prescribed by EPA)* 

 

High                   5,000 cfm, 55 W,  90 cfm/W 

Medium             3,000 cfm, 25 W,  120 cfm/W 

Low                   1,700 cfm, 9 W,  185 cfm/W 

 

Of course, some ceiling fans have even better performance characteristics than the minimum 

Energy Star ratings. Thus, their specific performance should be accounted for within proposed 

procedures if published performance data are available. 

 

* Minimum CFM/W for Energy Star is 155 for low, 100 for medium and 75 cfm/W for high. 
  http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/ceil_fans/final.pdf 

 

 

7.6 How do Ceiling Fans Vary within Households? 

 

Assuming that ceiling fans are used in homes, how many are typically installed? 

In Florida, a ceiling fan survey for Progress Energy (Parker, 2001) gave a mean of 4.3 ceiling 

fans in each house, and occupants claimed to use an average of 2.5 fans at one time. We used the 

large Progress Energy Study audit results (Parker, 2001) to examine how ceiling fan ownership 

varies. While we found the large expected variation, we also found that ceiling fans scaled 

somewhat with number of bedrooms (defined to include dens and studies in the auditing 

procedure) and that number of bedrooms was the best estimator of fan ownership for houses with 

ceiling fans. 

 

The parsimonious result and the recommended result for BA and HERS is to use the number of 

ceiling fans as: 

 

No. Ceiling Fans = 1 + Nbr 

 

We used a regression model to estimate how ceiling fan ownership varies with number of 

bedrooms. While the explanatory power of the relationship was poor (R-square was only 0.12), 

the t-statistic of the number of bedrooms variable indicated an undeniable influence on the 

typical number of ceiling fans installed in homes. 
 

      Source |       SS       df       MS              Number of obs =     203 

-------------+------------------------------           F(  1,   201) =   28.90 

       Model |   87.692266     1   87.692266           Prob > F      =  0.0000 

    Residual |  609.815123   201  3.03390609           R-squared     =  0.1257 

-------------+------------------------------           Adj R-squared =  0.1214 

       Total |  697.507389   202  3.45300688           Root MSE      =  1.7418 

http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/ceil_fans/final.pdf
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------------------------------------------------------------------------------ 

 ceilingfans |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    bedrooms |   .8264022   .1537135     5.38   0.000     .5233044      1.1295 

       _cons |   1.757692   .4690237     3.75   0.000      .832854     2.68253 

----------------------------------------------------------------------------- 

 

The t-statistic (5.38) for number of bedrooms is highly significant meaning that the number of 

bedrooms is an important driver for the number of ceiling fans in homes. 

 

The averages by the number of bedrooms 
______________________________________________________________________________ 

-> bedrooms = 2 

    Variable |     Obs        Mean   Std. Dev.       Min        Max 

-------------+----------------------------------------------------- 

 ceilingfans |      56       3.625    1.66856          0         10 

 

_______________________________________________________________________________ 

-> bedrooms = 3 

    Variable |     Obs        Mean   Std. Dev.       Min        Max 

-------------+----------------------------------------------------- 

 ceilingfans |     110    4.145455   1.723216          0          8 

 

_______________________________________________________________________________ 

-> bedrooms = 4 

    Variable |     Obs        Mean   Std. Dev.       Min        Max 

-------------+----------------------------------------------------- 

 ceilingfans |      32     4.90625   1.802496          0          7 

 

_______________________________________________________________________________ 

-> bedrooms = 5 

    Variable |     Obs        Mean   Std. Dev.       Min        Max 

-------------+----------------------------------------------------- 

 ceilingfans |       4        5.75   2.217356          3          8 

             

______________________________________________________________________________ 

  

7.7 Summary of Recommendations for Ceiling Fans 

 

We present summary recommendations for how to treat ceiling fans in either Benchmark or in 

HERS simulations 

 

1)  Ceiling fan electricity consumption = 42.6 Watts when on; 34 Watts for default Energy 

Star ceiling fan models. Otherwise with labeled CFM/W values at medium speed, the 

consumption is computed as:   W = 3,000 cfm/ CFM/Watt(Medium Speed) 

 

2)  Ceiling fan on-time = 10.5 hours/day, preferably distributed according the fractional-on 

time schedule given in Table 1 and shown in Figure 7. 

 

3)  Assumptions on the number of ceiling fans installed for the credit: 

  Cfan, number = 1 + Nbr 
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4)  Internal Heat Gain: 100% of the fan power consumption is assumed released indoors. 

 

 

8 Lighting Energy Use 

 

Lighting energy consumption in U.S. homes accounts for about 7% of total site energy use but 

approximately 20% of total average electricity energy use. Thus, when energy is evaluated on a 

source energy basis, lighting is a major energy end-use in U.S. homes. 

 

Estimates of interior household lighting energy in the United State vary from a low of 

approximately 1,000 kWh per year (EIA, 1996) to approximately 1,820 kWh/year based on 

monitoring individual light fixtures in 161 homes in the Pacific Northwest (Tribwell and 

Lermann, 1996). These homes had a floor area of approximately 1,800 square feet. Another 

study in 53 homes with a sample of fixtures monitored suggested an annual energy use of 

lighting of 2,390 kWh/year (Carlson, 1994). The EIA estimate has high uncertainty as it was 

based on a conditional demand analysis– a fact revealed in its own analysis (see EIA, 1996; 

Appendix C). 

 

It is also worth noting that FSEC did two case studies in Florida homes where the energy use of 

each light fixture was measured over an entire year. Although only case studies, these two 

houses showed much higher lighting levels– averaging 2.5 kWh/square foot of floor area. The 

energy use of outdoor nighttime lighting was very high in one of the houses. (Parker and 

Schrum, 1996) where the overall consumption was estimated at 4,050 kWh/year (3.02 kWh/sqft) 

with 34% of the measured lighting energy outside the home.
32

 The other home that had each 

fixture measured showed 2.05 kWh/sqft. While these remain case studies only, they point out the 

likely high variability of home lighting and also the importance of accounting for outdoor 

lighting. 

 

In monitoring of 171 homes in Central Florida, FSEC estimated lighting energy use and its 

demand profile in the Progress Energy households (Parker, 2001). The lighting fixtures were 

audited as well with the finding of 29 average lamps in the households and a connected potential 

lighting load of 1.5 kW. Average fixture power was 60 Watts. 

 

To estimate household lighting use in that study, we used the ―other‖ residual electrical demand 

profile over a daily cycle and subtracted the base load from the profile. This method results in a 

lighting load profile which is zero at 4 AM. Although this is strictly not the case due to nighttime 

lighting, previous analysis of this technique shows that it can fairly well estimate the lighting 

demand profile (Parker and Schrum, 1996). Since the resulting profile obviously includes 

television, stereo and other end uses, we then bound a likely estimate of the lighting demand 

profile by three values: one 60% of the resulting loads as the lower bound, 75% as the most 

likely and another 90% as the upper bound for lighting energy use. This methodology results in 

the lighting demand profile seen in Figure 8. 

 

                                                 
32

 Some 23% of the household lighting energy use was in the kitchen area– in agreement with standard engineering 

estimates which show lighting energy use in this room to dominate home lighting energy use. See Table 2: 

http://www.fsec.ucf.edu/en/publications/html/FSEC-CR-914-96/ 

http://www.fsec.ucf.edu/en/publications/html/FSEC-CR-914-96/
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Since the estimate was obtained by 

differencing metered end-use loads from 

total, there was some uncertainty. Our 

estimates ranged from a low of 940 kWh 

to a high of 1,500 kWh. Average house 

size was 1580 sq ft, so the median average 

consumption would be about 0.8 

kWh/sqft. There is also an implicit 

assumption within the way we estimated 

lighting – that lighting energy goes to zero 

when "other" was at its minimum at 3 AM 

(see Figure 8 illustrating the analysis). Of 

course, this is not likely true (some lights 

on in the average house at 3 AM), so the 

most likely value is probably between 

1,220 and 1,950 kWh/year (0.9 kWh/sqft). 

Thus, we arrived at the conclusion that an estimate of 0.9 kWh/sqft is probably reasonably 

accurate. This estimate fits very closely with the previously cited data sources, but does not 

include outdoor lighting. 

 

The number of lamps in households has been audited and varies from 26 - 45 lamps per 

household depending on the utility study (See Jennings et al, 1995, Navigant 2002 and SCE, 

1993). It is also worth considering that while the average home has about 35 lighting fixtures, 

those fixtures are in no way equivalent in terms of energy use. One study estimated that 25% of 

the lighting fixtures use 80% of household lighting (Jennings et. al., 1995). Available studies 

conclude that each lamp is on an average of 2.1 to 2.8 hours per day with an average 60 Watts 

per lamp typically installed. 

 

8.1 Previous Calculations 

 

The total annual lighting use for the Building America Benchmark is used as the basis for our 

estimates. These equations were derived from data for both single-family and multi- 

family housing and were documented in a lighting study conducted by Navigant for DOE 

(Navigant 2002). 

 

Interior Lighting = (455 + 0.8*CFA) kWh/yr 

Exterior Lighting = 250 kWh/yr 

Garage Lighting = 100 kWh/yr 

  where: 

CFA= conditioned floor area 

 

Annual indoor lighting kWh was expressed as a linear function of finished house area relative to 

a constant base value, while garage and exterior lighting are constants. Interestingly, the TIAX 

study (2008) estimated outdoor lighting to average about 243 kWh per household in the U.S. but 

did not estimate overall interior lighting levels. 

 

 
Figure 8.  Estimated lighting demand profile and energy use 

for 171 home sample of Progress Energy homes in 1999. 
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In our proposed formulation, we only split out interior and exterior lighting. The reasons for this 

simplification to the Benchmark and change to the HERS procedure are as follows: 

 

• The data quality do not support a more detailed assessment relative to garage/outdoor. 

However, all things equal, larger houses are likely to have larger outdoor and non-interior 

zones to be illuminated (eg. Large perimeter; larger garages, utility rooms etc.) 

• It is useful to explicitly separate interior from exterior lighting since there is a very large 

difference in impact on space conditioning loads.
33

 

 

We propose the following Reference Home lighting energy use: 

 

Interior lighting = 455 + 0.80*CFA (kWh/yr) 

Exterior lighting = 50 + 0.05*CFA (kWh/yr) 

Garage lighting = 100 kWh/yr (if and only if the home has enclosed garage) 

    

8.2 Procedure for Calculating Rated Home Impacts: 

 

For an equivalent light output, compact fluorescent lamps (CFLs) require about 25% of the 

electrical input for an equivalent lumen output. There are many examples.
34

 For instance, 

realizing that the 60 Watt bulb illumination is the most common type in U.S. households, they 

are typically replaced by a 13-15 Watt CFL. Newly available LED light sources tend to have 

similar efficacies to the CFLs: 

 

The HERS procedures specify that 10% of the interior lighting in the HERS Reference Home is 

assumed to be fluorescent.  In order to calculate improvements in Rated Home lighting energy 

use, it is necessary to adjust the standard interior lighting equation to account for this assumption 

and to provide a variable for the interior lighting fluorescent fraction: 

 

 Interior lighting kWh/yr = ((4 – 3*FFI)/3.7)*(455 + 0.80*CFA) Eqn. 7 

  where: 

 FFI = Fraction of interior fixtures that are fluorescent or LED lighting types 

 CFA = Conditioned floor area 

 

However, the HERS rules also assume that 20% of interior lighting may not be rated for greater 

efficiency because it consists of plug-in lamps and other rarely used lighting (e.g. hall closets, 

etc.).  As a result, only 80% of lighting fixtures are considered to be in ―qualifying locations‖ for 

HERS rating purposes.  To account for this assumption, the equation must be modified as 

follows: 

 

 kWh/yr = 80%*((4-3*qFFI)/3.7)*(445 + 0.8*CFA) + 20%*(455 + 0.8*CFA) Eqn. 8 

  where: 

 qFFI = Fraction of interior fixtures in qualifying locations which are fluorescent or LED 

lighting types 

                                                 
33

 Even if a simplistic fixture count is used to estimate the impact of efficient lighting, having an explicit count of 

those fixtures interior and exterior that are efficient will lead to better estimates of relative impact. 
34

 http://www.gelighting.com/na/home_lighting/ask_us/faq_compact.htm#which_bulb 
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 CFA = Conditioned floor area 

 

Note that if qFFI = 0.1(10%), then equation 8 reduces to the reference standard interior lighting 

equation (i.e. interior lighting kWh/yr = 455 + 0.8*CFA). 

 

For exterior and garage lighting, the procedure is more straightforward, as follows: 

 

Exterior lighting: kWh/yr = (50 + 0.05*CFA)*(1-FFE) + 0.25*(50 + 0.05*CFA)*FFE 

Garage lighting: kWh/yr = 100*(1-FFG) + 25*FFG 

  where: 

FFE = Fraction of exterior fixtures that are fluorescent, LED or IR-motion/light level 

controlled lighting types 

FFG= Fraction of garage fixtures that are fluorescent or LED lighting types. 

CFA = Conditioned floor area 

 

Note that internal gains from interior lighting energy are released to the interior at 100% while 

no heat from exterior or garage lighting is added to the building internal heat gains. 

 

 

9 Determination of Residual Miscellaneous Energy Use 
 

Along with the 2005 RECS data, the TIAX report has been (Roth, et al., 2008) relied on to 

generate data for this report.  This report describes the miscellaneous electric energy uses in 

average U.S. homes by appliance end use.  A few of these appliances are included explicitly in 

the above procedures for estimating miscellaneous energy consumption.  For example, national 

average ceiling fan, TV and outdoor lighting energy uses are included in the TIAX data.  These 

uses are explicitly dealt with in the above sections of this report.   

 

Other major appliances that are subject to standardized testing, rating and labeling procedures 

promulgated by DOE (10 CFR 430) are not included in the TIAX report.  For all practical 

purposes, these items are broadly classified as ―major‖ appliances.  These major appliances are 

also explicitly dealt with in the above sections of the report.  This leaves the minor appliances for 

which we do not have explicit methods of estimating that must be lumped into a category that we 

will call ―residual‖ miscellaneous energy use.  These residual energy uses also must be included 

in energy estimations for homes; otherwise, we will underestimate whole building energy use in 

engineering models that are designed to project typical home energy use. 

 

The data for these appliances, as derived from the TIAX report, are given in Table 2. 
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Table 2.  Residual Miscellaneous Electric Loads - MELs (principally from TIAX report) 

End Use UEC  Saturation kWh/year Source Notes 

Desk top Computer 235 0.64 150 TIAX Table 6-20 

Well Pump 862 0.17 147 TIAX Saturation = RECS 2001 

Microwave 131 0.96 126 TIAX Table 4-26 

Rechargeable Electronics 69 1.00 69 TIAX Table 4-71 

Spa 2040 0.03 61 TIAX Tabel 5-15 

Set-top Box Cable 133 0.45 60 TIAX Section 4.14 

Computer Monitor 85 0.64 54 TIAX Section 4.8 

Component Stereo 122 0.40 49 TIAX Table 4-3 

Clothes Iron 53 0.92 49 TIAX Table 5-7 

Vacuum Cleaner 42 0.98 41 TIAX Table 5-25 

Printers/MFD 57 0.68 39 TIAX p. 4-50. 

Coffee Maker 61 0.61 37 TIAX Table 4-16 

VCR Player 47 0.79 37 TIAX Table 4-98 

Hair Dryer 42 0.86 36 TIAX Table 5-5 

Toasters & Toaster Oven 39 0.90 35 TIAX Table 5-21 

Water Bed 1096 0.03 33 TIAX p. 5-35 

Component Audio 81 0.40 32 TIAX Table 4-3 

Set-top Box Satellite 129 0.25 32 TIAX Section 4.14 

Aquarium 210 0.13 27 TIAX Table 5-1 

DVD Player 36 0.74 27 TIAX Table 4-98 

Cable/DSL Modem 53 0.40 21 TIAX Table 4-33 

Notebook Computer 72 0.25 18 TIAX Table 6-20 

Home Theater in a Box 89 0.17 15 TIAX Table 4-3 

Security System 61 0.24 15 TIAX Table 4-74 

Clock Radio 15 0.90 14 TIAX Table 4-3 

Portable Audio 17 0.30 5 TIAX Table 4-3 

Other Miscellaneous 329 1.00 329 LBNL See Sheet #2 

Residual Miscellaneous Electric Loads (+10%) 1,714     

 

Since these TIAX data are not tied to any specific average home size, we assume an average 

home size of 1900 ft
2
 (from RECS data) and an average number of occupants (number of 

bedrooms) of 2.8 (from Census data).  This information is necessary because the remainder of 

typical miscellaneous energy use, as described in the preceding sections, is tied to home size, 

number of bedrooms or both.  Residual MELs are increased by 10% to account for the increases 

in peripheral home electronics and entertainment devices that have likely occurred since the data 

contained in Table 2 were collated (~2005).  With these assumptions, we are able to calculate the 

total miscellaneous energy loads (MELs) for a home of this size and number of bedrooms.  The 

data for these lighting and major appliances energy uses are provided in Table 3. 
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Table 3. Explicit & Total Miscellaneous Energy Uses 

for national average home (1900 ft
2
, 2.8 bedrooms). 

End Use   kWh/year 

Interior lighting  1,975 

Clothes dryers   941 

Refrigerators   687 

TVs   621 

Ovens/Ranges   440 

Ceiling fans (TIAX national average)  332 

Exterior lighting   195 

Dishwashers   165 

Clothes washers   69 

Subtotal Explicit MELs 5,426 

Subtotal Residual MELs (from Table 2) 1,714 

Total (1900 ft
2
 home with 2.8 bedrooms) 6,984 

 

It is important to note that the data provided in Table 3 are specific to the characteristics of the 

home specified in the table.  For homes of different square footage and number of bedrooms, the 

values would change as a function of these variables in accordance with the provisions outlined 

in the previous sections of this report.  

 

9.1 Proposed Standards for BA Benchmark and HERS Reference Homes 

 

For the purposes of defining the miscellaneous electric loads (MELs) and the internal gains 

(iGain) in the BA Benchmark and the HERS Reference Homes, we define all end uses and 

component loads except TVs using the following general equation: 

 

 Y = a + b*CFA + c*Nbr 

   where: 

Y = the appropriate MEL or internal gain as appropriate 

a, b & c = the specified offset and coefficients for the calculation of ‗Y‘ 

CFA = the conditioned floor area of the home 

Nbr = the number of bedrooms in the home 

 

Table 4a presents two sets of these coefficients for all electric homes.  The first, for MELs, 

determines the total electric use for each end-use component in the home and the second, for 

total internal gains (iGains), defines the percentage of these MELs that end up as internal gains 

in the conditioned space.  The total internal gains are calculated on a component by component 

basis as a percentage of each individual end use expected to result in an internal gain in the 

home.  The relevant percentage used in the calculation is shown for each end-use component. 
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Table 4a. Reference Home miscellaneous electric loads and their associated internal gains*  

End Use  

Components 

MELs (total energy use): Internal (iGain as % of MELs): 

a b c % MELs a b c 

Residual MELs   0.91   90%   0.82   
Interior lighting  455 0.80   100% 455 0.80   

Exterior lighting 100 0.05      
Refrigerator  637   18 100% 637   18 

TVs  See Table 4c 100% See Table 4c 
Range/Oven (elec) 331   39 80% 265   31 

Clothes Dryer (elec) 524.156   148.618 15% 79   22 

Dish Washer 78.15   30.852 60% 47   19 

Clothes Washer 37.72   10.487 30% 11   3 
Gen water use         203   68 

Occupants       100%     764 

* All values given in kWh per year. To convert to Btu/day multiply by (3,412/365) = 9.35 

 

For homes with natural gas cooking or clothes drying, it is necessary to replace the values used 

in Table 4a for these end-use components with values representing standard natural gas use.  

Table 4b provides these data. 

 

Table 4b. Reference Home natural gas appliance loads and associated internal gains 

End Use  

Components 

MELs (total energy use): Internal (iGain as % of MELs): 

a b c % MELs a b c 

Range/Oven (therms) 22.6  2.7 80% 18.1  2.2 

Range/Oven (kWh) 22.6  2.7 80% 18.1  2.2 

Clothes Dryer (therms) 18.75  5.3164 15% 2.8  0.8 

Clothes Dryer (kWh) 41.36  11.728 15% 6.2  1.8 

* Values given in kWh per year or therms per year. To convert to Btu/day multiply kWh/yr by 

(3,412/365) = 9.35 or therms/yr by (100,000/365) = 274 

 

Table 4c. Reference Home TV electric loads and internal gains 

Nbr TVkWh/yr TV iGain Nbr TV kWh/yr TV iGain 

1 463 463 7 858 858 

2 561 561 8 898 898 

3 636 636 9 933 933 

4 705 705 10 966 966 

5 762 762 11 994 994 

6 814 814 12 1020 1020 

* All values given in kWh per year. To convert to Btu/day multiply by (3,412/365) = 9.35 

 

Note that for the Residual miscellaneous electric loads given in Table 4a there is only a ‗b‘ 

coefficient.  This coefficient is simply derived by dividing the total Residual miscellaneous 

electric load given in Table 2 by the square footage of the national average home (1900 ft
2
). 

Although there is little information on how the residual miscellaneous loads vary with floor area, 

since they are primarily influenced by plugs and minor appliances which are distributed 
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throughout the building, the likelihood is that these loads at least primarily follow the floor area 

itself. The derivations for the other miscellaneous electric loads are provided in the previous 

sections of this report. 

 

General water use, which shows up only for internal gains, is also provided.  This item is 

provided as an estimate of internal energy gains to the space from hot water used in the 

conditioned space for uses ranging from water use in sinks and showers, kitchen end-uses, floor 

mopping, plant watering, etc.  It is based on an evaporated water use that does not go down the 

drain in the average home of two gallons per week, with a commensurate water temperature of 

90 
o
F.  The water is assumed to evaporate with a commensurate heat of vaporization equal to 

1050 Btu/lb of water. This internal heat of vaporization results in a negative sensible internal 

gain to the space equal to this heat of vaporization. It is apportioned to an offset and a coefficient 

for the number of bedrooms in the home in the same fashion that the standard daily hot water 

energy consumption is determined (where gallons per day (gpd) = 30 +10*Nbr).  The proportion 

of the two gallons per week attributed as an offset is derived from the offset of 30 and the 

proportion attributable to the number of bedrooms is derived from the coefficient of ten, such 

that the value scales with number of bedroom in the home in the same fashion that hot water is 

assumed to scale.  The impact becomes much more clear in Table 5 where internal gains are 

apportioned into their latent and sensible components. 

 

Occupant internal gains are estimated based on the assumption of one occupant per bedroom.  

On average, an occupant is assumed to generate approximately 400 Btu/hr in total gains and to 

be present within the home for 16.5 hours of the day.  Of the occupant gains, approximately 44% 

are assumed to be latent and 56% sensible. 

 

In addition, ceiling fans are not included in Table 4 because they represent a special case that 

cannot be generally defined for all climates.  All the evidence indicates that the use of ceiling 

fans is strongly dependent on climate with significantly more use in warm southern climates than 

in northern cold climates.  As a result, many homes in northern climates are not equipped with 

ceiling fans.  Therefore, we recommend that ceiling fans be handled in much the same way they 

are currently dealt with by the RESNET Standards (RESNET, 2006).   

 

Ceiling fans would be included in the BA Benchmark or HERS Reference Home only if they are 

installed in the BA Prototype or HERS Rated Homes.  The annual energy use for ceiling fans 

would be determined as previously recommended, as a function of the subject climate, where 

ceiling fan use is expected to occur only in months having an average monthly temperature 

exceeding 63 
o
F.  During these months, the requisite number of ceiling fans would be operated 

for 10.5 full-load hours per day in both the Rated/Prototype and Reference/Benchmark Homes 

with 100% of the energy consumed added to both the home energy use and to the internal gains 

of the home.  Ceiling fans would make no contribution to latent internal gains. 

 

9.2 Internal Gain Percentages  

 

Not all miscellaneous electric loads result in internal gains to the conditioned space of a home.  

Outdoor lighting is one clear example.  Here we provide a recapitulation of the internal gain 

percentage values contained in Table 4 above along with some of the logic for each value. 
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Residual – 90% of residual loads are assumed to accrue to internal gains.  While there is no 

reported data to confirm this value, it is considered reasonable as these loads include 

some fraction of electrical use for electrical tools and equipment that is used outside the 

conditioned space. It is assumed that 5% of this internal gain is latent. 

 

Interior Lighting – 100% of internal lighting loads are assumed to accrue to internal gains for 

self-evident reasons. 

 

Outdoor Lighting – 0% of outdoor lighting is assumed to accrue to internal gains for self- 

evident reasons. 

 

Refrigerators – 100% of refrigerator loads are assumed to accrue to internal gains as 

refrigerators are normally wholly contained within the conditioned space.  In the event 

that second refrigerators or freezers are located outside the conditioned space, such as 

in an unconditioned garage, they should not result in additional internal gains to the 

space. 

 

TVs – 100% of television loads are assumed to accrue to internal gains as no televisions are 

assumed to be located in separate, unconditioned spaces or outdoors. 

 

Range/Ovens – 80% of cooking loads are assumed to accrue to internal gains.  The remaining 

20% are assumed to be vented to the outdoors by kitchen ventilation hoods. It is 

assumed that 10% of this internal gain is latent for electric range/ovens and 20.6% for 

gas range/ovens. 

 

Clothes washers – 30% of clothes washer loads are assumed to accrue to internal gains. This 

value assumes that 60% of clothes washer loads result in heat gain through the cabinet 

but that roughly 50% of clothes washers are located in separate, unconditioned laundry 

rooms or garages and would, therefore not contribute to internal gains.  Clothes washers 

are sometimes located outside the conditioned space.  In these cases, no internal gains 

would accrue from this appliance. 

 

Clothes Dryers – 15% of clothes dryer loads are assumed to accrue to internal gains.  This 

value assumes that 30% of the clothes dryer load  results in heat gain through the 

cabinet but that roughly 50% of clothes dryers are located in separate, unconditioned 

laundry rooms or garages and would, therefore, not contributing to internal gains.  Like 

clothes washers, clothes dryers may be located in unconditioned space.  In these cases, 

no internal gains would accrue from this appliance. It is assumed that 10% of this 

internal gain is latent for electric clothes dryers and 11.1% is latent for gas clothes 

dryers. 

 

Dishwashers – 60% of dishwasher loads are assumed to accrue to internal gains.  The 

remaining 40% is assumed to go down the drain as hot water. It is assumed that 50% of 

this internal gain is latent. 
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Table 5 presents a breakdown of the total internal gains (iGains) into their latent and sensible 

load components.  Again, the latent component is calculated as a percentage of the individual 

total internal gain, and the sensible portion is then calculated as the difference between this latent 

portion and the total. 

 

Table 5a. Latent and sensible partitioning of internal gains*  

for all electric Reference Homes 

End Use  

Components 

Latent Gain (as % of  iGain) Sensible Gain (iGain-latent) 

% iGain a b c a b c 

Residual MELs 5%   0.04     0.78   
Interior lighting          455 0.80   
Refrigerator          637   18 

TVs          See Table 4c 
Range/Oven 10% 26   3 238   28 
Clothes Washer 10% 1   0 10   3 
Clothes Dryer 10% 8   2 71   20 
Dish Washer 50% 23   9 23   9 

Gen water use   133   44 -131.28   -43.76 

Occupants 43.7%     309     398 

* All values given in kWh per year. To convert to Btu/day multiply by (3,412/365) = 9.35 

 

Again, note in Table 5a that general water use is attributed overwhelmingly to latent gains and 

that there is a negative sensible gain to the space.  This is due to the latent heat of vaporization 

and the fact that all of these two gallons per week of water use is assumed to evaporate into the 

living space.  The very small portion of the sensible gain resulting from the average water 

temperature of 90 
o
F is overwhelmed by this 1050 Btu/lb heat of vaporization.   

 

For homes with natural gas cooking and clothes drying, the values in Table 5a must be replaced 

by the values in Table 5b. 

 

Table 5b. Latent and sensible partitioning of internal gains*  

for Reference Homes with natural gas appliances 

End Use  

Components 

Latent Gain (as % of  iGain) Sensible Gain (iGain-latent) 

% iGain a b c a b c 

Range/Oven (therms) 20.6% 3.7   0.4 14.4   1.7 

Range/Oven (kWh) 10.0% 1.8   0.2 16.3   1.9 

Clothes Dryer (therms) 11.1% 0.3   0.1 2.5   0.7 

Clothes Dryer (kWh) 10.0% 0.6   0.2 5.5   1.6 

* Values given in kWh per year or therms per year, as appropriate. To convert to Btu/day 

multiply kWh/yr by (3,412/365) = 9.35 or therms/yr by (100,000/365) = 274 

 

The latent internal gains in Table 5a and 5b are based on assumed percentages of the total gains 

that are latent (moisture) rather than sensible.  The latent percentages for natural gas in Table 5b 

have been increased over their electric counterparts in Table 5a due to the fact that combustion of 

natural gas produces water vapor at the rate of approximately 10,600 Btu per therm (or 

approximately 10.6% of the thermal energy).  For natural gas energy use, the increased 10.6% is 
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added to the latent percentage given in Table 5a to arrive at the latent percentages given in Table 

5b, but the electric energy use latent percentage is left unchanged from Table 5a. The 

percentages used are the authors‘ best logical estimates.  These estimates are not derived from 

reported data, and the authors are not aware of empirical data that lend themselves to such a 

derivation.   However, generally accepted engineering practice has long held that latent internal 

gains should be on the order to 20% of total internal gains.  Table 6 provides a set of calculations 

based on Table 5a values for both total (iGains) and latent internal gains for various all electric 

home sizes and number of bedrooms as a means of determining the reasonableness of these 

proposed latent internal gain percentages. 

 

Table 6. Internal Gains (including occupants) 

Configuration iGain* Latent* % latent 

1000-2br 49.1 10.02 20.4% 

1000-3br 57.7 13.78 23.9% 

1500-2br 56.6 10.21 18.0% 

1500-3br 65.3 13.97 21.4% 

2000-3br 72.8 14.16 19.4% 

2000-4br 81.5 17.92 22.0% 

2500-3br 80.4 14.35 17.8% 

2500-4br 89.0 18.11 20.3% 

3000-3br 88.0 14.54 16.5% 

3000-4br 96.6 18.30 18.9% 

5000-4br 126.9 19.07 15.0% 

5000-5br 135.5 22.83 16.8% 

    Average = 19.2% 

* Internal gains given in units of kBtu/day 

 

Based on Table 6, the authors believe that the proposed latent percentages are reasonable and 

within the bounds of generally accepted engineering practice.  The overall average latent 

percentage for the entire set of all electric home configurations is 19.2%, which is very close to 

the generally accepted ―norm‖ of 20%.  In addition, the 1500 ft
2
, 3-br home and the 2000 ft

2
,  

3-br home bound the 20% norm value, lending some credence to the recommended end use 

percentages. 

 

The majority of software analysis tools incorporate internal gains in hourly or daily rather than 

annual increments.  Additionally, internal gains are normally expressed in terms of Btu rather 

than kWh.  Therefore, Tables 7a and 7b convert the equation coefficients in Tables 5a and 5b 

from kWh/yr and therms/yr to Btu/day for ease of use in software analysis.  

 

Table 7a.  Internal gains for all electric Reference Homes 

End Use  

Components 

Sensible Gains (Btu/day) Latent Gains (Btu/day) 

a b c a b c 

Residual MELs   7.27     0.38   

Interior lighting  4,253 7.48         

Refrigerator  5,955   168       
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End Use  

Components 

Sensible Gains (Btu/day) Latent Gains (Btu/day) 

a b c a b c 

TVs  See Table 7c       

Range/Oven (elec) 2,228   262 248   29 

Clothes Washer 96   28 11   3 

Clothes Dryer (elec) 661   188 73   21 

Dish Washer 219   87 219   87 

Gen water use 27   9 1,868   623 

 

Table 7b.  Internal gains for natural gas appliances in Reference Homes. 

End Use  

Components 

Sensible Gains (Btu/day) Latent Gains (Btu/day) 

a b c a b c 

Range/Oven (gas) 4,086   488 1,037   124 

Clothes Dryer (gas) 739   209 91   26 

 

Table 7c. Sensible internal gains for Reference Home TVs 

Nbr Btu/day Nbr Btu/day 

1 4,324 7 8,018 

2 5,243 8 8,399 

3 5,942 9 8,726 

4 6,593 10 9,028 

5 7,119 11 9,293 

6 7,608 12 9,538 

 

For certain applications like performance-based code compliance, which consider only heating, 

cooling and hot water energy use and for which appliance fuel types are generally not known, it 

is appropriate to have a single set of internal gains.  This can be accomplished by weighting the 

internal gains for natural gas and electric Range/Ovens and Clothes Dryers according to their 

market penetrations.  According to the 2005 RECS data set, these market penetrations are 38% 

and 24% for natural gas Range/Ovens and Clothes Dryers, respectively.  Table 7d presents these 

data along with a weighted total, which can be used as the basis for a weighted set of single 

equations for sensible and latent internal gains for these purposes.  Note also that it is necessary 

to make a number of bedroom assumption to televisions to arrive at weighted totals for these 

internal gains. 

 

Table 7d. Weighted average electric/gas internal gains for Reference homes
35

 

End Use  

Components 

Sensible Gains (Btu/day) Latent Gains (Btu/day) 

a b c a b c 

Residual MELs 

 

7.27 

  

0.38 

 Interior lighting  4,253 7.48 

    Refrigerator  5,955 

 

168 

   TVs (assumes 3-br)  5,942 
                                                      

35
 Revised on 05/23/2011 based on error in original report. 
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Range/Oven (wgt'd) 2,934 

 

348 547 

 

65 

Clothes Dryer (wgt'd) 680 

 

193 78 

 

22 

Dish Washer 219 

 

87 219 

 

87 

Clothes Washer 96 

 

28 11 

 

3 

Gen water use 18 

 

6 1,245 

 

415 

Weighted Total 20,096 14.75 830 2,099 0.38 592 

  

 

9.3 Comparison with Current HERS Standards 

 

Summing the ‗a‘, ‗b‘ and ‗c‘ coefficient values given for MELs by Table 4 results in the 

following overall equation for MELs (not counting televisions) for all electric homes: 

 

MELs (kWh/yr) = 2,163 + 1.76*CFA + 248*Nbr 

 

Likewise, for the HERS Reference home, RESNET standards provide the following overall 

equation for MELs (including TVs): 

 

MELs (kWh/yr) = 2,016 + 2.69*CFA + 0*Nbr 

where: 

CFA = Conditioned Floor Area (ft
2
) 

Nbr = Number of bedrooms 

 

The offsets for these two equations are very similar – both are very near 2,000 kWh/year.  

However, the ‗b‘ and ‗c‘ coefficients for conditioned area and number of bedrooms, respectively, 

are quite different.  On examining these differences, it becomes clear that the coefficient for 

conditioned area has significantly more impact on the final MELs result than either the offset or 

the coefficient for number of bedrooms.  Even for home sizes of 1,000 ft
2
 the conditioned area 

coefficient yields annual kWh values similar to the offset value and greater than the number of 

bedrooms value for four bedrooms.  Since one of the formulations includes televisions and the 

other does not, the equations are not directly comparable.  However, the two standards can be 

compared across a range of home sizes and number of bedrooms to observe the differences 

between the present and proposed standards for MELs evaluation.  

 



51 

 

Figure 9 presents results of such a 

comparison showing both the MELs and 

the total internal gains (not counting the 

gains from the occupants) for both the 

current HERS Reference Home and this 

proposed standard for various home sizes 

and number of bedrooms.  While MELs 

and internal gains are reasonably similar 

for the two standards in small homes, it 

is clear that the proposed standard 

provides for significantly reduced MELs 

and internal gains in larger homes.  The 

change in MELs represented by the 

proposed standard ranges from +13% for 

the 1000 ft
2
, 3-bedroom home 

configuration to -18% for the 5000 ft
2
,  

4-bedroom home configuration.  The 

change in internal gains represented by the proposed standard ranges from -0.6% to -24% for the 

same two home configurations. 

 

There have been significant anecdotal reports on this subject, all of which tend to support the 

perspective that the current standard over predicts MELs and internal gains in large homes.  This 

is consistent with results from this study.  It is also a reasonable result since the current RESNET 

standard for MELs was developed based on the 2003 IECC equation for internal gains in homes, 

which, in turn, was based on only very limited data and analysis.  Thus, it is not surprising that a 

more detailed study of these lighting, appliance and miscellaneous loads would yield different 

results.  

 

 

10  Potential of Energy Feedback,  Automated Controls and Smart Meters in Homes 
 

Until recently, most new and existing homes in North America have had no means to judge 

household energy use other than their monthly utility bill. Unfortunately, this fact does not 

readily provide insight as to how or where the energy is being used. Available studies show that 

providing direct instantaneous feedback on household electrical demand can reduce energy 

consumption by 5 - 15%.
36

 Recently, such feedback devices are commercially available and 

widely being installed in utility smart metering programs around the U.S. 

 

Not only are these feedback-related reductions potentially large as they comprise all end-uses, 

they may provide unique opportunities to realize goals for high-efficiency buildings. Reducing 

and shifting electrical demand is particularly important in Zero Energy Homes (ZEH), where it 

would be desirable to match solar electric PV output with household loads. There are parallels 

with hybrid automobiles, where accumulating evidence suggests that feedback from dash-

mounted displays allows drivers of Toyota's Prius and other similar hybrids to improve their 

                                                 
36 B. Neenan and J. Robinson, Residential Energy Use Feedback: A Research Synthesis and Economic Framework, EPRI-

1016844, Electric Power Research Institute, Palo Alto, CA, December 2008. 

 
Figure 9. MELs and total internal gains, excluding occupants, 

in representative home configurations for current and proposed 

standards.  
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mileage as they learn from experience. As the physical efficiency attributes of buildings 

improves, there are decreasing returns to further investment in efficiency upgrades. Behavioral 

changes may hold the best hope for further cost-effective reductions.  

 

10.1  Feedback Studies 

 

Past studies show that providing household energy feedback promises to reduce consumption, 

(Katzev and Johnson, 1986; Farhar and Fitzpatrick, 1989). For instance, an early study in Twin 

Rivers, NJ in the 1970's showed the promise of real-time energy displays to reduce energy use by 

10-15% (Seligman and Darley, 1977; 1978). Other early studies showed similar savings (Palmer 

et al., 1977, McClelland and Cook, 1979). Potential savings also extend to non-electric fuels; 

Van Houwelingen and Van Raaij (1989) showed a 12% drop in natural gas consumption in 

Dutch homes provided with daily feedback. A few studies could not reliably observe savings 

from energy-use feedback. For instance, in experiments in Canada and California, Hutton et al. 

(1986) showed uneven results with electricity savings of 5% in 92 Quebec homes compared with 

a control group but less than 3% in a California sample. 

 

There are fewer larger scale studies of the impacts of real time energy-feedback. In one study 

conducted by Ontario Hydro in Canada, Dobson and Griffin (1992) found that displays in 25 

Canadian homes produced overall electricity savings of 13%, which largely persisted after the 

devices were removed. 

 

Another intriguing study of instantaneous electric demand feedback was conducted in Japan. 

This evaluation showed 12% measured average total energy reduction from feedback in ten 

highly instrumented test homes (Ueno et al., 2005). The savings in electricity were even greater 

at 18% against those for natural gas (9%). Perhaps most compelling was that measured 

reductions in "other appliance" electricity use averaged 31%. In Florida, Parker et al., 2007, 

conducted a study which showed a 7% measured electricity reduction in 20 homes that were 

tracked over a two year period before and after receiving real-time feedback. A compilation of 

available data on real-time feedback studies (Darby, 2000) suggests an average 10-15% 

reduction in overall energy. 

 

Since Darby‘s compilation, a large sample study of 500 sites compared with a similarly-sized 

control group has been conducted in Canada using the PowerCost Monitor. This project showed 

a 6.5% savings from having instantaneous feedback to consumers (Mountain, 2006). A further 

sub-sample showed a 7-10% savings if having the device is coupled with educational tips for 

what can be done to drop loads. Several large sample studies will soon be available. For instance, 

a 100 home pilot study of the impact of an enhanced real-time feedback system is being 

conducted in Cape Cod and Martha‘s Vineyard (Cole and Calligan, 2009) with results expected 

in mid 2010. One rather obvious weakness of all the feedback systems thus far is that none of 

them address natural gas or fuel oil use which is exceedingly common for heating and water 

heating around the U.S. 

 

10.2  Potential of Comparative Feedback 

 

A number of evaluations are finding that energy reducing user behavior can be enhanced by 
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appealing to competitive human nature or providing information. For instance, Ceniceros (2009) 

found a 2% measured energy reduction in Sacramento, California by simply providing utility 

bills that showed energy use in comparative homes with a similar demographic. Another study of 

175 homes in Madison, Wisconsin found a 7% energy reduction from providing an energy audit 

along with information on how to reduce home energy loads (Kindig, 2009). Finally in Juneau, 

Alaska in April, 2008 an avalanche downed power lines, drastically reducing available electric 

power. When both expert advice, conservation information and a high price signal was provided, 

the city was able to drop its electricity consumption by over 30% in a matter of days (Chen, 

2008). Such studies (IEA, 2005) likely test the maximum potential that behavioral-related 

technologies have to offer, and such levels are not likely sustainable over the long term without 

enabling technologies. 

 

Opower is a company focused on home energy efficiency through an innovative program that 

helps homeowners to see where their energy consumption fits relative to their neighbors. It 

collects and analyzes utility customers' bills and provides customized reports and 

recommendations on how to shave consumption. One of the key features is giving people access 

to a portal where they can see how their energy usage compares to neighbors. Microsoft has a 

similar system, but the Opower system currently appears further developed.
37

 

 

Thus far, Opower has partnered with over twenty utilities to provide owner-vs- neighbor 

comparisons into gas and electric bills. Based on the success of pilot programs in Sacramento 

and the Puget Sound area in Washington, Opower has recently added National Grid of Waltham, 

Mass., and Seattle City Light. Currently, one million households currently receive customized 

reports, which show them how much energy they are using vs. similar households in their 

neighborhood. (To establish "comparable neighbors," Opower looks at the conditioned floor area 

of the home, heating system type and whether there are large amenities such as a swimming 

pool. 

 

Results have shown that customers in the program have reduced annual energy usage by an 

average of 2.8%, or the equivalent of 280 kilowatt-hours per year. In its pilot evaluation with the 

Sacramento Municipal Utility District, the savings have been greatest in households that with the 

largest energy use pre-Opower: Such households have reduced consumption by an average of 

more than 6%.
38

 

                                                 
37

 Not surprisingly, Microsoft has also ventured into the smart grid arena with a home energy management business system 

called Hohm, a Web application. This service is similar to Opower, but is it instead emphasizes home innovation and retrofit.  So 

far, Microsoft has signed deals with a couple of utilities so consumers can have bill information fed into the application. Hohm 

provides advice on how to lower home energy through a detailed survey. 
38

 http://www.forbes.com/feeds/businesswire/2009/10/01/businesswire129684303.html 

http://www.forbes.com/feeds/businesswire/2009/10/01/businesswire129684303.html
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10.3  Technology Summary 

 

Due to advances in 

microelectronics and computing, 

energy feedback devices and 

smart meters for home use are 

now commercially available and 

low in price. Models typically 

provide a small wall or desk 

mounted display that 

communicates the second-by-

second electric power demand of 

the household. Most accumulate 

data to show expected monthly 

utility costs or time related energy 

cost data. Some devices are now 

available for as little as $200. For 

instance, more detailed and 

expensive systems can report on 

disaggregated end uses. The 

Whirlpool Corporation has 

developed an advanced ―Energy 

Monitor‖ system which provides 

information on household total 

electricity demand and data from 14 separate circuits. In one pilot project with monitoring, no 

impact was seen although the device was not fully functional. However, the project did show 

over a five month period from April- August 2005, lighting and plug loads comprised 1300 kWh 

or 35% of total household use. 

 

This example calls into question whether the additional information is a benefit or liability 

(―valuable insight‖ vs. ―too much information‖). Commercially available models vary in terms of 

capability. Two popular devices currently are the PowerCost Monitor (Masters, 2006) and The 

Energy Detective, TED. Both systems simplify installation by avoiding costly hard-wiring. The 

TED sends the energy demand signal over household wiring, whereas the PowerCost Monitor 

uses a radio signal from an optical pickup on the meter itself. 

 

Of significance is that the most recent TED device, the TED 5000 not only allows in-home 

display of power use but also displays that data on an in-home computer for logging and sharing 

of the data via an Internet gateway.
39

 These data can be made available on TED‘s own dashboard 

and with various displays as shown in Figure 11 - 13. 

 

                                                 
39

 http://www.theenergydetective.com/what/features.html) 

 
Figure 10. Customized OPower homeowner monthly energy bill 

showing motivational comparison with neighborhood. 

http://www.theenergydetective.com/what/features.html
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Figure 11. TED 5000 energy use dashboard showing current power use of 0.402 kWh 

and 7.1 net kWh used since midnight. 

 

 
Figure 12. TED 5000 desktop display showing the house 

with an electrical demand of 3.940 kW 
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Figure 13. TED hourly data display showing house power (green) and 

PV output (yellow) over last seven days. 
 

 

10.3.1  Feedback with Automated Controls 

 

While national studies have shown 5 - 15% whole-house energy savings from feedback, this 

strategy alone, automated controls with feedback, may potentially produce better performance or 

at least obtain the upper end of this range more dependably. 

 

Smart thermostat control systems such as Ecobee or Dreamwatts allow control of household 

thermostats and data access to temperatures over a broadband connection. Automated controls 

for shedding loads (www.greenswitch.tv ) in homes such as Greenswitch are also available. 

 

http://www.greenswitch.tv/
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Figure 14. Dreamwatts: web displayed and controlled wireless thermostat. 

 

Greenswitch provides a wireless switch that sets back the HVAC thermostat and deactivates up 

to six wall and plug switches after a master switch is turned off to signal an unoccupied home. 

Such systems have reduced consumption by up to 20% in the hotel industry, but there is no 

reliable data on the savings that can be readily achieved in homes. One system with both 

feedback and controls is the Energy Hub system.
40

 EnergyHub provides information on overall 

household power and the power used by devices plugged into the various deployed plug 

modules. The device also allows control of the devices plugged into various switches and plugs 

around the house with simple touch-pad activation. Capabilities include: 

 

$ Real time energy feedback on whole house energy use for effective feedback. 

$ Automated control ability to set up or set back the household thermostat when asleep or 

away from home. 

$ Radio controlled load shed of plug loads around the home. 

 

 
Figure 15. Energy Hub display and outlet control modules. 

                                                 
40 http://www.energyhub.net/ 
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Figure 16. Example of feedback information from the Energy Hub display. 

 

Energy Hub plans to not only provide information on household power but also to provide data 

on generation from PV, wind or co-generation as well. In addition, data developed within the 

Building America program has shown that homes with solar electric power generation are more 

motivated by displays that provide information on the balance of power being used in the 

building vs. what is being 

generated (Parker et al., 2006). 

Within this framework, many 

participating homeowners become 

involved in a game or sport with 

the display where the idea is to get 

the net power to zero or below 

when the sun is up. Evidence 

suggests engagement may boost 

active participation  

with displays and overall 

effectiveness of projects that 

include generation. Similar data 

has been developed in parallel in 

the United Kingdom.
41

 For 

instance the TED 5000 equipment 

allows visualization of the output of the solar system, and the household electric power 

consumption as shown in Figure 17. 

                                                 
41 Keirstead, J (2007) ―Behavioural responses to photovoltaic systems in the UK domestic sector‖, Energy Policy. 35(8): p. 4128. 

 
Figure 17. Daily display of PV system performance (yellow) vs. 

house demand (green) and net demand (dark blue) 

http://www.jameskeirstead.ca/documents/Keirstead2007b.pdf
http://www.sciencedirect.com/science?_ob=PublicationURL&_cdi=5713&_pubType=J&_auth=y&_acct=C000011279&_version=1&_urlVersion=0&_userid=217827&md5=dcf694bbeeceedbcf73a7726c6175567


59 

 

 

10.3.2  Recent Developments in Smart Meters 

 

Recently, there have been many new feedback displays and controls that have become available 

with the large interest in smart meters. These are meters that record electrical use in more detail 

than standard meters, often recording when power was used. They also allow for feedback to 

consumers regarding the potential for control and the remote reading of energy use by utilities. 

There are many more of these than can be easily described here since many are startup 

companies and the field is very rapidly changing. However, we describe some representative 

types of displays, technologies and commonly employed approaches, freely making use of 

information from vendors and trade journals. 

 

Smart grid systems will likely become more prevalent in the future, as efforts at establishing a 

national smart grid accelerate and electricity providers begin providing more data – and possibly 

in a standardized format to customers, as advocated by Google. Many illustrations of the success 

of such an approach are emerging where consumers reduce energy use using data from smart 

meters to compete with neighbors or even the larger family of smart meters users.
42

 

 

However, entrenched divisions across utilities remain, with considerable doubt whether they will 

agree on one method for communicating data through smart meters. There is also debate 

regarding the preferred wireless standard to use, with ZigBee popular in the United States while 

Zwave dominates in Europe. For now, however, there are many competing standards for how 

these programs and devices operate, and utility companies appear reluctant to make their data 

accessible to third-party developers. 

 

Control4, Inc. 

 

Control4 is an innovative home 

technology management system 

that is being currently tested by 

utilities for smart metering 

applications. Control4’s EMS-100 

includes a wireless thermostat that 

connects to a wireless in-home 

display. As initially configured, it 

has energy management and 

demand response capabilities, plus 

various ―lifestyle‖ applications 

including weather and photo 

viewing. Control can be exercised 

too, over the internet via computer 

or iPhone. For instance, 

Control4's Mobile Navigator 

                                                 
42 Shogren, Elizabeth. "Smart Meter Saves Big Bucks for Pennsylvania Family." National Public Radio, 28 April 2009. 

 
Figure 18. Control4 main home display 



60 

 

License is one of the few iPhone applications that allow remote control of devices in homes – 

from lights to thermostat controls. Other energy management functions are planned.
43

 With a 

compatible home entertainment system, the in-home display also becomes a universal remote 

control. Control4 expects the later function to become a major motivator for users choosing that 

system. While Control4 appears to have a strong position relative to technological capabilities, 

the system displays do not appear to be as compelling as some of the other reviewed systems. 

 

  

                                                 
43 Our Home Spaces, has developed an iPhone application to control any home device that's WiFi-connected, including high kW 

draw items such as water heaters and dryers.  http://www.ourhomespaces.com/index.html 
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Greenbox Technology, Inc. (Silver Spring Networks) 

 

Greenbox Technology, 

recently acquired by Silver 

Spring Networks, features 

a system which lets a 

residential customer view, 

interpret, and act on their 

utility consumption over 

the Internet. Greenbox also 

allows examination and 

control of distributed 

generation resources such 

as solar photovoltaic 

energy production and 

remote control of some 

devices over the web. 

 

A strength of the 

Greenbox approach is 

helping users to 

interactively diagnose and 

understand home equipment and appliance load profiles, identifying home base load phantom 

loads and other energy waste. However, one weakness of the Greenbox system is that the 

information is not available over a dedicated in-home display and must be accessed over the 

computer. In many homes, that computer or computers are often involved in other tasks and thus 

energy information must compete with other computer end-uses. Still, one pilot of the Greenbox 

system in 24 homes showed that most users were able to use the system to cut their electricity 

use by 15-20%– higher than typically achieved.
44

 

 

  

                                                 
44 ―Smart Meters Open Markets for Smart Apps,‖ by Erik Olsen, New York Times, 7 October 2008. 

 
Figure 19. Greenbox computer home graphic display. 
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Grounded Power, Inc. 

 

Grounded Power is a 

Massachusetts smart grid start up 

using innovative displays and 

social psychology to motivate 

energy consumers to save. Users 

can see how their energy usage 

compares to others in their region 

and they can set individual goals 

using system software. The 

system also attempts to engage 

users via comparison and even 

competition. Data is made 

available on a dedicated display 

and on the computer via Internet. 

Dedicated plug monitors allow 

evaluation of energy use of 

specific devices to isolate 

phantom loads and use of various 

appliances. 

 

Grounded Power is testing their 

system with a few utilities in 

Massachusetts where utility 

employees can communicate with 

customers on how to reduce 

energy based on their data. 

Grounded Power has a large scale 

pilot evaluation (300 homes) 

underway in the Cope Cod area. 

This study consists of an 

experimental group and two 

control groups, one a true control 

group and another one which 

wished to have the feedback devices installed, but did not receive installation and were instead  

recruited to create a mirror control group to eliminate self-selection bias. 

 

Tendril 

 

Tendril is another start-up smart metering system that can communicate with a wireless gateway 

to provide energy use data. Tendril consists of several components (TREE: Tendril Residential 

Energy Ecosystem) with similar functionality to Energy Hub’s: Tendril Insight is the primary 

display providing feedback on realtime energy use. Tendril Thermostat is a wireless thermostat 

that interfaces with the main control system to provide user controlled operation of the household 

 
Figure 20. Grounded Power in home display and 

computer comparison comparing current  

usage with that of neighboring houses. 
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thermostat. The Tendril Volt is a Zigbee-enabled plug that allows people to monitor energy use 

and control appliances plugged into it. 

 

 
Figure 21. Tendril home energy use display. 

 

Data from the system can also be viewed via Web portal. Currently, Tendril's products are only 

available through utilities using energy-management systems during smart grid trials pilot 

programs. However, like Energy Hub, Tendril is a full featured product with the capabilities of 

feedback display, access of information over the internet and control of specific devices and the 

heating and cooling system. 

 

Comverge 

 

Comverge is smart grid company that is 

providing feedback and load reduction 

services to utilities and their customers using 

advanced metering and wireless Zigbee 

communication. The system emphasizes 

systems that will help consumers and home 

energy systems respond to time-of-day electric 

pricing. A wireless display (PowerPortal) 

provides information on real-time household 

electric consumption. However, the device is 

unique in that colored LEDs (green, amber and 

red) advise the homeowner as to whether they 

are in low cost vs. high cost utility supply 

periods or even periods of Critical Peak 

Pricing (CPP). 

 

 
Figure 22. Comverge power portal display. 
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A separate thermostat control module (SuperStat) 

using information from the utility to provide 

proportional demand reduction from the HVAC 

system in response to utility and consumer 

preferences. The smart thermostat monitors 

HVAC operation and control cycles using 

percentage-based commands. 

 

This strategy helps to eliminate ―freeriders‖ and 

provides greater control of oversized systems and 

more equitable load reduction across customers. 

The system also monitors the room temperature 

rise during a cycling control event and reduces the cycling depth once the room temperature 

reaches the setback value. This feature helps to reduce customer discomfort during long control 

periods or in poorly insulated homes. 

 

Comverge smart meters and associated controls are in a large smart grid pilot program in 

Oklahoma Gas and Electric Company territory. The program is using time-of-day pricing, 

feedback and smart thermostats to achieve changes to load shape and peak load reduction. 

 

Google Power Meter 

 

Data from some smart meters can also be displayed with the Google Power Meter website which 

allows the information to be made available anywhere in the world in a consistent format on their 

iGoogle home page.
45

 Google‘s recent entrance to the open utility market has generated a great 

deal of interest. Third-party access to residential utility consumption data has a very large 

perceived value, and it seems obvious that Google sees opportunity in selling services around 

that information.  

 

Currently, Google Power 

Meter is working with 

smart meters within the 

following utilities: TXU 

Energy, JEA, WPS, 

SDG&E and White River 

Valley Electric 

Cooperative. Google is 

also providing the same 

service for owners of the 

TED 5000 system. In such 

a fashion, the data are 

easily shared and saved as 

desired, which is shown in 

Figure 24. 

                                                 
45http://www.google.org/powermeter/ 

 
Figure 23. Comverge radio controlled Superstat. 

 
Figure 24: Google power meter display for December 13-14

th. 
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10.4  Consideration for Implementation into Rating Systems 

 

As described earlier, there is generally wide consensus from data from a multitude of projects 

around the world that the savings from providing realtime feedback to homeowners varies from 

5-15%. One possible recommendation is that the lower end of this range be applied to applicable 

projects as a credit for reduced electrical consumption: a 5% reduction. How would this be 

applied? All electrical end uses that have behavioral influences– perhaps all other than 

refrigeration would be eligible for this credit if an operable system is provided with real-time 

feedback capability. 

 

The potential of feedback coupled with smart control of devices such as Energy Hub is certain to 

be larger, but are not yet known within available research. A straw man recommendation might 

be a 10% reduction to electrical energy end uses, if both feedback, and controls for thermostats 

and/or plugs are made available and  operational. This credit would apply to all electrical end-

uses other than refrigerators. 

 

    

11 Summary 
 

Through detailed incorporation of both the TIAX report on miscellaneous electric loads and the 

detailed work done by NREL on better calculation of appliance end-use energy, we suggest a 

series of recommended procedures to better estimate lighting, appliance and residual electric 

loads in simulation analyses. The following nine residential end uses are addressed: 

 

• Lighting 

• Refrigerators 

• Clothes dryers 

• Clothes washers 

• Televisions 

• Dishwashers 

• Ceiling Fans 

• Cooking 

• Residual electric use 

 

Television energy use – 4% of national residential energy use – is addressed for the first time. A 

number of end-uses have received more complete evaluation. Some end uses, such as clothes 

washers and dishwashers, include a refined calculation procedure which much better reflects 

their influences and interactions with multiple end uses. 

 

Finally, the impact of household energy feedback and home automation schemes using smart 

meters are examined. Based on available empirical data, preliminary recommendations made for 

implementation into rating and calculation procedures. 

 

These procedures provide a consistent and helpful framework for analyzing differences in 

residential energy systems that influence the ability of future residential buildings to reach 
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advanced energy-efficiency targets. The analysis pursued a balanced approach where increasing 

calculation complexity was weighed against those items that potentially make a difference in 

future energy efficiency designs or with analyses of existing homes for retrofit and improvement. 

 

The documentation and description of the mathematical procedures are contained in this report in 

a complete form. However, for convenience, an EXCEL spreadsheet including the data sources, 

analysis and methods for the specific calculations are available for download. 
46 

 

 

12 Future Work 

 

We anticipate the following work in further refinements of the BA Benchmark and residential 

rating procedures. 

 

1) A more comprehensive assessment of lighting and lighting influences. We know that all 

lighting fixtures are not equal. For instance, kitchen lighting appears at least twice as important 

as lighting in other areas. There are also seasonal effects given changes in sunrise/sunset times. 

However, methods need to be developed that allow better assessment and reasonable approaches 

for raters. NREL is actively working on this task. 

 

2) Consider large UEC equipment and appliances such as pool pumps, well pumps, spas and 

water beds for inclusion in rating systems 

 

3) Incorporation of digitized shading patterns (e.g. Solmetric sun-eye technology) into PV 

performance prediction (a 30% effect on PV output in shaded environments may not be 

uncommon). 

 

4) Influence of fireplaces on default leakage rates. Fireplaces often show up in energy surveys 

and statistical analyses as factors increasing energy use. It would be useful to know how specific 

leakage areas typically vary with the presence of fireplaces and the degree to which they are 

sealed. 

 

5) Specific adjustments of rating procedures for existing homes where equipment or envelopes 

are at significant variance with those in new homes. This includes refrigerators, since vintage is 

such a large influence, poorly charged old air conditioners, uninsulated frame walls and many 

other items. 

 

 

  

                                                 
46

 The spreadsheet download showing the calculations is available at the following BA website sponsored by FSEC: 

http://www.fsec.ucf.edu/download/MELs/ 

http://www.fsec.ucf.edu/download/MELs/
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Appendix A:  RECS 2005 Average U.S. Consumption Data 

 
Table US14.  Average Consumption by Energy End Uses, 2005  
Million British Thermal Units (BTU) per Household 

  
U.S. 

Households 
 (millions) 

Energy End Uses (million Btu of consumption per household) 

All 
End 
Uses 

Space Heating 

(Major Fuels)
4
 

Air-

Conditioning
5
 

Water 

Heating
6
 

Refrigerators 
 Other Appliances 

and Lighting 

        
Total.................................................................. 111.1 94.9 40.5 9.6 19.2 4.6 24.7 
        
Census Region and Division        

Northeast........................................................ 20.6 122.2 71.8 4.5 21.9 4.3 23.0 
New England.............................................. 5.5 129.3 85.6 2.5 21.5 4.1 20.1 
Middle Atlantic............................................ 15.1 119.7 66.9 5.1 22.0 4.4 24.0 

Midwest.......................................................... 25.6 113.5 58.4 6.2 20.6 4.9 25.9 
East North Central...................................... 17.7 117.7 63.3 5.7 20.9 4.9 26.2 
West North Central..................................... 7.9 104.1 47.8 7.3 19.7 5.0 25.4 

South.............................................................. 40.7 79.8 21.0 14.5 15.8 4.8 25.0 
South Atlantic............................................. 21.7 76.1 21.3 13.3 13.9 4.8 24.2 
East South Central...................................... 6.9 87.3 27.6 12.7 16.2 5.3 26.8 
West South Central.................................... 12.1 82.4 16.7 17.7 19.1 4.6 25.5 

West............................................................... 24.2 77.4 26.3 7.6 21.3 4.3 24.1 
Mountain..................................................... 7.6 89.8 34.3 14.1 20.5 4.5 24.0 
Pacific......................................................... 16.6 71.8 22.4 4.2 21.7 4.2 24.2 
        

Four Most Populated States        
New York....................................................... 7.1 118.2 71.5 4.1 22.4 4.0 21.1 
Florida............................................................. 7.0 60.0 3.4 20.3 10.4 4.4 22.2 
Texas............................................................. 8.0 81.5 13.2 19.4 19.8 4.7 25.7 
California........................................................ 12.1 67.1 15.7 4.7 23.3 3.7 23.8 
All Other States.............................................. 76.9 101.8 47.1 8.3 19.0 4.9 25.2 

        
Urban/Rural Location (as Self-Reported)        

City................................................................. 47.1 85.3 36.7 9.5 18.3 4.0 21.2 
Town.............................................................. 19.0 102.3 48.1 8.5 19.4 4.7 24.3 
Suburbs.......................................................... 22.7 108.6 42.6 11.0 23.4 5.1 28.9 
Rural............................................................... 22.3 95.1 39.5 9.5 16.8 5.4 28.0 
        

Climate Zone
1
        

Less than 2,000 CDD and--        
Greater than 7,000 HDD............................. 10.9 117.9 68.1 3.1 20.6 4.9 24.9 
5,500 to 7,000 HDD.................................... 26.1 115.0 63.8 4.8 20.3 4.6 24.4 
4,000 to 5,499 HDD.................................... 27.3 101.7 47.6 7.4 19.6 4.8 24.6 
Fewer than 4,000 HDD............................... 24.0 76.4 21.4 9.1 20.3 4.4 25.1 

2000 CDD or More and--        
Less than 4,000 HDD................................. 22.8 72.4 10.0 19.4 15.7 4.6 24.5 

        
Type of Housing Unit        
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U.S. 

Households 
 (millions) 

Energy End Uses (million Btu of consumption per household) 

All 
End 
Uses 

Space Heating 

(Major Fuels)
4
 

Air-

Conditioning
5
 

Water 

Heating
6
 

Refrigerators 
 Other Appliances 

and Lighting 

Single-Family Detached.................................. 72.1 108.4 44.2 11.0 21.7 5.2 29.3 
Single-Family Attached................................... 7.6 89.3 41.7 6.7 19.0 4.0 20.9 
Apartments in 2-4 Unit Buildings.................... 7.8 85.0 48.5 6.3 15.6 3.5 16.3 
Apartments in 5 or More Unit Buildings.......... 16.7 54.4 25.0 6.6 12.2 3.0 11.8 
Mobile Homes................................................. 6.9 70.4 26.1 9.2 13.3 4.2 21.4 

        
Ownership of Housing Unit        

Owned.......................................................... 78.1 104.4 43.1 10.4 20.8 5.1 28.0 
Single-Family Detached.............................. 64.1 109.8 44.7 11.0 21.9 5.4 29.8 
Single-Family Attached............................... 4.2 94.9 44.0 6.3 20.2 4.1 21.9 
Apartments in 2-4 Unit Buildings................ 1.8 110.5 65.8 4.8 18.4 4.1 19.5 
Apartments in 5 or More Unit Buildings...... 2.3 50.9 20.4 7.3 10.8 2.9 13.1 
Mobile Homes............................................. 5.7 70.5 25.5 9.4 12.8 4.2 21.8 

Rented.......................................................... 33.0 72.4 33.8 7.7 15.4 3.5 16.7 
Single-Family Detached.............................. 8.0 96.5 39.8 10.8 20.1 4.2 25.3 
Single-Family Attached............................... 3.4 82.6 38.8 7.2 17.6 3.9 19.7 
Apartments in 2-4 Unit Buildings................ 5.9 77.1 42.8 6.8 14.8 3.3 15.3 
Apartments in 5 or More Unit Buildings...... 14.4 55.0 25.7 6.5 12.5 3.1 11.6 
Mobile Homes............................................. 1.2 70.0 29.2 8.4 15.9 4.0 19.6 
        

Year of Construction        
Before 1940................................................... 14.7 120.4 71.6 5.7 20.2 4.5 23.1 
1940 to 1949.................................................. 7.4 104.0 51.6 7.9 21.8 4.2 23.8 
1950 to 1959.................................................. 12.5 98.3 47.3 7.9 19.1 4.3 22.5 
1960 to 1969.................................................. 12.5 94.9 42.9 8.6 19.2 4.7 24.3 
1970 to 1979.................................................. 18.9 83.4 33.8 9.5 16.8 4.6 22.9 
1980 to 1989.................................................. 18.6 81.4 26.7 10.7 18.0 4.6 24.2 
1990 to 1999.................................................. 17.3 94.4 31.0 11.8 20.1 5.4 28.6 
2000 to 2005.................................................. 9.2 94.4 28.7 13.4 21.3 4.5 28.5 
        

Total Floorspace (Square Feet)        
Fewer than 500.............................................. 3.2 56.5 30.3 4.9 12.2 3.2 11.2 
500 to 999...................................................... 23.8 62.0 28.4 6.8 13.3 3.3 14.5 
1,000 to 1,499................................................ 20.8 82.0 33.5 9.2 17.2 4.0 21.4 
1,500 to 1,999................................................ 15.4 93.8 36.5 10.9 19.2 4.9 26.0 
2,000 to 2,499................................................ 12.2 102.3 41.2 10.2 21.0 4.8 27.6 
2,500 to 2,999................................................ 10.3 112.2 48.2 9.8 22.4 5.2 29.6 
3,000 to 3,499................................................ 6.7 115.6 53.2 9.8 21.1 5.4 28.9 
3,500 to 3,999................................................ 5.2 129.2 60.9 10.7 23.2 5.8 31.6 
4,000 or More................................................. 13.3 140.4 56.8 13.1 27.7 6.5 38.2 
        

Household Size        
1 Person......................................................... 30.0 70.7 37.4 6.1 11.7 3.9 14.4 
2 Persons....................................................... 34.8 96.4 41.9 10.1 18.5 4.9 24.4 
3 Persons....................................................... 18.4 104.1 41.4 10.7 21.7 5.0 28.8 
4 Persons....................................................... 15.9 108.4 41.0 11.4 24.2 4.8 31.4 
5 Persons....................................................... 7.9 117.1 41.9 13.1 27.2 4.9 34.5 
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U.S. 

Households 
 (millions) 

Energy End Uses (million Btu of consumption per household) 

All 
End 
Uses 

Space Heating 

(Major Fuels)
4
 

Air-

Conditioning
5
 

Water 

Heating
6
 

Refrigerators 
 Other Appliances 

and Lighting 

6 or More Persons.......................................... 4.1 123.8 41.7 12.8 33.3 4.9 38.4 
        

2005 Household Income Category        
Less than $10,000......................................... 9.9 73.7 38.6 7.0 14.1 3.7 15.2 
$10,000 to $14,999........................................ 8.5 76.2 37.9 6.7 14.1 4.0 17.0 
$15,000 to $19,999........................................ 8.4 78.8 37.5 7.6 15.3 4.0 18.2 
$20,000 to $29,999........................................ 15.1 84.9 39.5 8.2 16.2 4.1 20.6 
$30,000 to $39,999........................................ 13.6 86.2 36.4 10.0 17.3 4.5 22.3 
$40,000 to $49,999........................................ 11.0 95.0 39.9 9.9 18.5 4.6 25.0 
$50,000 to $74,999........................................ 19.8 99.2 38.7 10.5 20.8 4.9 27.2 
$75,000 to $99,999........................................ 10.6 112.4 47.5 10.6 22.1 5.1 30.3 
$100,000 or More........................................... 14.2 130.5 47.3 12.9 29.2 6.1 38.2 

        
Income Relative to Poverty Line        

Below 100 Percent......................................... 16.6 79.8 39.0 7.7 16.3 3.8 18.4 
100 to 150 Percent......................................... 12.9 80.7 35.3 8.6 16.0 4.1 20.6 
Above 150 Percent........................................ 81.5 100.3 41.5 10.2 20.3 4.9 26.6 
        

Eligible for Federal Assistance
2
        

Yes................................................................. 38.6 83.1 39.5 7.9 16.6 4.0 19.7 
No................................................................... 72.5 101.2 41.0 10.5 20.6 5.0 27.3 
        

Payment Method for Utilities        
All Paid by Household..................................... 97.5 97.3 40.2 10.1 19.7 4.8 25.9 
Some Paid, Some in Rent................................ 7.6 77.2 44.4 5.0 15.2 3.5 15.1 
All Included in Rent......................................... 4.7 74.9 40.3 7.4 15.1 3.6 14.1 
Other Method.................................................. 1.3 95.0 42.1 9.6 18.0 5.3 26.0 
        

Ethnic Origin of Householder        
Hispanic Descent........................................... 14.8 80.3 32.6 10.3 19.6 3.8 21.2 
Non-Hispanic Descent.................................... 96.3 97.2 41.6 9.6 19.2 4.8 25.2 

        

Race of Householder
3
        

White.............................................................. 79.1 98.2 42.2 9.6 19.2 4.9 25.6 
Hispanic...................................................... 5.0 73.5 26.4 10.9 18.8 3.9 20.6 
Non-Hispanic.............................................. 74.1 99.9 43.1 9.5 19.3 4.9 25.9 

Black............................................................... 13.4 92.5 39.5 9.9 18.7 4.1 22.5 
Hispanic...................................................... 0.3 99.6 53.0 7.1 18.0 4.2 19.3 
Non-Hispanic.............................................. 13.1 92.3 39.1 9.9 18.7 4.0 22.6 

Asian.............................................................. 3.3 75.2 28.4 9.1 20.0 3.9 21.2 
Multi-Racial..................................................... 1.3 87.0 31.7 10.5 18.5 4.6 26.5 
Other.............................................................. 7.1 85.9 33.8 9.8 19.7 4.4 23.2 
Undetermined (Race Reported as Hispanic).. 6.9 82.4 36.2 9.6 19.1 3.8 21.1 

                

       
   1  One of five climatically distinct areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days.    A household is assigned to a 
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U.S. 

Households 
 (millions) 

Energy End Uses (million Btu of consumption per household) 

All 
End 
Uses 

Space Heating 

(Major Fuels)
4
 

Air-

Conditioning
5
 

Water 

Heating
6
 

Refrigerators 
 Other Appliances 

and Lighting 

climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station. 
   2  Below 150 percent of poverty line or 60 percent of median state income. 
   3  Respondents were permitted to select more than one racial category to describe themselves.  The "Other" category includes Native Americans, Native Alaskans, and Pacific 
Islanders.   
   4  Housing units where the main or secondary space-heating fuel is electricity, natural gas, fuel oil, kerosene, or LPG. 
   5  The number of housing units where the end use is electric air-conditioning, does not include households that did not use their equipment (1.9 million).  It does include the small 
number of housing units where the fuel for central air-conditioning equipment was something other than electricity; those households were treated as if the fuel was electricity. 
   6  Housing Units where the main or secondary water-heating fuel is electricity, natural gas, fuel oil, kerosene, or LPG. 
   Q = Data withheld either because the Relative Standard Error (RSE) was greater than 50 percent or fewer than 10 households were sampled. 
   N = No cases in the reporting sample. 
   (*) Number less than 0.5, 0.05, or 0.005 depending on the number of significant digits in the column, rounded to zero. 
   Notes:  ● Because of rounding, data may not sum to totals.  ● See "Glossary" for definition of terms used in this report. 
   Source:  Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-457 A-G of the 2005 Residential Energy Consumption Survey. 
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Appendix B:  Proposed Changes to RESNET Standards 

 

Proposed Changes to the RESNET Standards for 

Updating Lighting, Appliances and  

Miscellaneous Electric Loads 
 

Add the following definition to Section 302, Definitions and Acronyms: 

 

MBtu  – One million British thermal units (Btu).  

 

Modify Section 303.2.1 as follows: 

 

Step (2) Determine the HERS Index using equation 2: 

   

HERS Index = PEfrac * (TnML / TRL) * 100  (Eq. 2) 

where: 

TnML =  nMEULHEAT + nMEULCOOL + nMEULHW  + EULLA (Total of all normalized 

modified end use loads for heating, cooling and hot water as calculated using 

equation 1 plus EULLA = [(18,842 + 25.1*CFA) * 365] / (1*10
6
) MBtu/year, 

modified by allowable reductions for qualifying lighting and appliances as 

specified by Section 303.4.1.7.2 of this Standard in MBtu/yr). 

TRL = REULHEAT + REULCOOL + REULH W + REULLA  (Total of all Reference Home 

end use loads for heating, cooling and hot water plus REULLA = [(18,842 + 

25.1*CFA) * 365] / (1*10
6
) MBtu/year in MBtu/yr).  

and where: 

EULLA = Rated Home end use loads for lighting and appliances as defined by 

Section 303.4.1.7.2, converted to MBtu/yr, where MBtu/yr = (kWh/yr)/293 

or (therms/yr)/10 as appropriate. 

REULLA = Reference Home end use loads for lighting and appliances as defined by 

Section 303.4.1.7.1, converted to MBtu/yr, where MBtu/yr = (kWh/yr)/293 

or (therms/yr)/10 as appropriate. 

and where: 

PEfrac = (TEU - OPP) / TEU 

TEU = Total energy use of the Rated Home including all rated and non-rated energy 

features where all fossil fuel site energy uses are converted to Equivalent 

Electric Power by multiplying them by the Reference Electricity Production 

Efficiency of 40% 

OPP = On-site Power Production as defined by Section 303.1.1.5 

 

Modify Table 303.4.1(1) as follows: 

 

Internal gains: As specified by Tables 

303.4.1(3) and 303.4.1(4) 

IGain = 17,900 + 23.8*CFA + 

4104*Nbr  (Btu/day per 

dwelling unit) 

Same as HERS Reference 

Home, except as provided by 

Section 303.4.1.7.2 
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Table 303.4.1(3).  Internal Gains for HERS Reference Homes 
(a) 

End Use / 

Component 

Sensible Gains (Btu/day) Latent Gains (Btu/day) 

a b c a b c 

Residual MELs  7.27   0.38  

Interior lighting  4,253 7.48     

Refrigerator  5,955  168    

TVs  see Table 303.4.1(4)    

Range/Oven (elec) 
(b)

 2,228  262 248  29 

Range/Oven (gas) 
(b) 

4,086  488 1,037  124 

Clothes Dryer (elec) 
(b) 

661  188 73  21 

Clothes Dryer (gas) 
(b) 

739  209 91  26 

Dish Washer 219  87 219  87 

Clothes Washer 96  28 11  3 

Gen water use 18  6 1,245  415 

Occupants 
(c)

   3978   3,162 

Notes for Table 303.4.1(3) 

(a) Table values are coefficients for the following general equation:  Gains = a + b*CFA + c*Nbr  

where CFA = Conditioned Floor Area and Nbr = Number of bedrooms. 

(b) For Rated Homes with electric appliance use (elec) values and for Rated homes with natural 

gas-fired appliance use (gas) values 

(c) Software tools shall use either the occupant gains provided above or similar temperature  

dependant values generated by the software where number of occupants equals the number  

of bedrooms and occupants are present in home 85% of the time. 

 

Table 303.4.1(4) Sensible Internal Gains  

for HERS Reference Home Televisions 

Nbr TV Btu/day Nbr TV Btu/day 

1 4,324 7 8,018 

2 5,243 8 8,399 

3 5,942 9 8,726 

4 6,593 10 9,028 

5 7,119 11 9,293 

6 7,608 12 9,538 

 

Renumbering all following tables accordingly. 

 

Modify Section 303.4.1.7 as follows: 

 

303.4.1.7 Lighting, and Appliances and Miscellaneous Electric Loads (MELs) 

 

303.4.1.7.1 Lighting.  Reference home annual lighting use in kWh/yr/(dwelling unit) shall 

be calculated as (455 + 0.80 * CFA) with an internal gain factor equal to 90% of lighting 

energy use (10% of lighting energy use is assumed to occur outside of the conditioned floor 

area of the home). 
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For the purpose of adjusting the annual light fixture energy consumption for calculating the 

rating, EULLA shall be adjusted by adding lighting EULLA, where EULLA 

(MBtu/yr/(dwelling unit)) = [29.5  0.5189*CFA*FL%  295.12*FL% + 0.0519*CFA] * 

0.003413, and where FL% is the ratio of Qualifying Light Fixtures to all light fixtures in 

Qualifying Light Fixture Locations, and CFA is the Conditioned Floor Area.  For calculation 

purposes, the rated home shall never have FL% less than 10%.   

 

For lighting, internal gains in the Rated home shall be reduced by 90% of the lighting 

EULLA calculated in Btu/day using the following equation: Igain = 0.90 * EULLA * 10
6
 / 

365.. 

 

303.4.1.7.2 Refrigerators.  Reference home annual refrigerator energy use shall be 775 

kWh/yr per dwelling unit. 

 

For the purposes of adjusting the annual refrigerator energy consumption for calculating the 

rating, the EULLA shall be adjusted by adding EULLA, where refrigerator 

EULLA(kWh/yr/(dwelling unit)) = Total Annual Energy Consumption of Refrigerators in 

Rated Home – 775. 

 

For refrigerators, internal gains in the Rated home shall be reduced by 100% of the 

refrigerator EULLA calculated in Btu/day using the following equation: Igain = EULLA * 

10
6
 / 365. 

 

303.4.1.7.3 Mechanical Ventilation System Fans.  If ventilation fans are present, the 

EULLA shall be adjusted by adding EULLA, where EULLA (kWh/year/(dwelling unit)) = 

Total Annual Energy Consumption of the Ventilation System in the Rated Home – 

[0.03942*CFA + 29.565*(Nbr+1)] 

 

303.4.1.7.4 Dishwashers.  A dishwasher, with annual energy use as specified by Table 

303.4.1.8 with an internal gain factor equal to 60% of dishwasher energy use, shall be 

assumed in the Reference home.  If no labeled dishwasher energy factor is specified for the 

Rated home, the Rated home shall have the same dishwasher annual energy use and internal 

gain factor as the Reference home. 

 

Table 303.4.1.8 

Bedrooms 

per Dwelling 

Unit 

Reference 

Dishwasher 

kWh 

1   90 

2 126 

3 145 

4 174 

5+ 203 
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For the purposes of calculating dishwasher energy savings and hot water energy savings for 

calculating the rating, the energy savings shall be calculated based on the following formula 

using Cycles/Year by number of Bedroom (Nbr) as specified in Table 303.4.1.9 

 

Dishwasher annual energy use for each dwelling unit in the rated home (kWh/yr) = (0.27) * 

(cycles/yr/(dwelling unit)) / (dishwasher rated Energy Factor) 

 

Table 303.4.1.9 

Nbr per 

Dwelling 

Unit 

Cycles/Yr 

per 

Dwelling 

Unit 

1 154 

2 214 

3 247 

4 296 

5+ 345 

EULLA shall be adjusted by adding dishwasher EULLA, where EULLA ( MBtu/yr/(dwelling 

unit)) = (cycles/yr)*[0.27/(dishwasher rated Energy Factor) – 0.587]*0.003413.   

 

Internal gains in the Rated Home shall be reduced by 60% of the dishwasher EULLA 

calculated in Btu/day using the following equation: Igain = 0.60 * EULLA * 10
6
 / 365. 

 

The reduction in hot water use (gallons/day) shall be based on the following formula, to be 

used in adjusting the hot water Use Equation given by Table 303.4.1(1): 

 

Reduction in hot water use (gallons/day/(dwelling unit)) = [(7.4 gal/cycle) – 

(0.73)/(dishwasher rated Energy Factor in cycles/kWh)/(90 
o
F)/(0.0024 kWh/gal/F)] * 

[(cycles/yr/(dwelling unit))/(365 days/year)] 

 

303.4.1.7.1  HERS Reference Home.  Lighting, appliance and miscellaneous electric loads 

in the HERS Reference Home shall be determined in accordance with the values provided in 

Table 303.4.1.7.1(1) and Table 303.4.1.7.1(2) or Table 303.4.1.7.1(3), as appropriate, and the 

following general equation (except for televisions): 

 

kWh (or therms) per year = a + b*CFA + c*Nbr 

where: 

‗a‘, ‗b‘, and ‗c‘ are values provided in Table 303.4.1.7.1(1) or Table 303.4.1.7.1(2) 

CFA = conditioned floor area 

Nbr = number of bedrooms 

 

Television energy use in the HERS Reference Home shall be determined in accordance with 

Table 303.4.1.7.1(2) or the following equation: 
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TVkWh/yr = Σ(actWattsSTD,i *onHours,i  +  offWattsSTD,i *offHours,i )  

+ p*(actWattsSTD,m *onHours,m  +  offWattsSTD,m *offHours,m) 

where:  

i = 1, n = TV#  

n = INT(1.1 + 0.51*Nbr) 

o = 1.1 + 0.51*Nbr  

p = o – n (a fractional TV) 

m = n +1 = TV# for partial TV 

and where: 

actWattsSTD = 124 – 69.1*log(10)TV#  (or 50 watts, whichever is greater) 

offWattsSTD = 4 

onHours = 6.876 – 7.054*log(10)TV#  (or 0.5 hours, whichever is greater) 

offHours = 24 – onHours 

 

303.4.1.7.1.1  All Electric Reference Homes.  Where the Rated Home has all electric 

appliances, the HERS Reference Home lighting, appliance and miscellaneous loads shall be 

determined in accordance with the values given below in Tables 303.4.1.7.1(1) and 

303.4.1.7.1(2). 

 

Table 303.4.1.7.1(1).  Lighting, Appliance and Miscellaneous  

Electric Loads in all electric HERS Reference Homes 

End Use  

Component
(a)

 

Equation Coefficients 

a b c 

Residual MELs  0.91  

Interior lighting  455 0.80  

Exterior lighting 100 0.05  

Refrigerator  637  18 

Televisions See Table 303.4.1.7.1(2) 

Range/Oven 331  39 

Clothes Dryer 524  149 

Dish Washer 78  31 

Clothes Washer 38  11 

Table 303.4.1.7.1(1) Notes: 

(a)  For homes with garages, an additional 100 kWh per year shall 

be added to the HERS Reference home for garage lighting. 

 

Table 303.4.1.7.1(2).  Annual Television Energy  

Use for HERS Reference Home 
(a)

 

Nbr TVkWh/yr Nbr TVkWh/yr 

1 463 7 858 

2 561 8 898 

3 636 9 933 

4 705 10 966 
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Nbr TVkWh/yr Nbr TVkWh/yr 

5 762 11 994 

6 814 12 1020 

Table 303.4.1.7.1(2) Notes: 

(a) For homes with more than 12 bedrooms, the equation 

provided in Section 303.4.1.7.1 may be used 

 

303.4.1.7.1.2  Reference Homes with Natural Gas Appliances.  Where the Rated Home 

is equipped with natural gas cooking or clothes drying appliances, the Reference Home 

cooking and clothes drying loads defined above in Table 303.4.1.7(1) shall be replaced by 

the natural gas and electric appliance loads provided below in Table 303.4.1.7(3), as 

applicable. 

 

Table 303.4.1.7(3).  Natural Gas Appliance Loads  

for HERS Reference Homes with gas appliances 

End Use  

Component
(a)

 

Equation Coefficients 

a b c 

Range/Oven (therms) 26  3.1 

Range/Oven (kWh) 26  3.1 

Clothes Dryer (therms) 18.8  5.3 

Clothes Dryer (kWh) 41  11.8 

Table 303.4.1.7(3) Notes: 

(a) Both the natural gas and the electric components 

shall be included in determining the HERS Reference 

Home annual energy use for the above appliances. 

 

303.4.1.7.1.3  Garage Lighting.   Where the Rated Home includes an enclosed garage, 

100 kWh/yr shall be added to the energy use of the Reference Home to account for garage 

lighting. 

 

303.4.1.7.1.4  Mechanical Ventilation.  Where mechanical ventilation is provided in the 

Rated home, REULLA shall be modified for the Reference Home by adding [0.03942*CFA 

+ 29.565*(Nbr+1)] kWh/yr for ventilation fan operation, converted to MBtu/yr, where 

MBtu/yr = (kWh/yr)/293. 

 

303.4.1.7.1.5  Ceiling Fans.  Where ceiling fans are included in the Rated Home they shall 

also be included in the Reference Home in accordance with the provisions of Section 

303.4.1.7.2.11 of this Standard. 

 

303.4.1.7.2  Rated Homes.  For Rated homes, the following procedures shall be used to 

determine lighting, appliance and residual miscellaneous electric load energy consumption. 

 

303.4.1.7.2.1   Residual MELs.  Residual miscellaneous electric loads in the Rated Home 

shall be the same as in the HERS Reference Home and shall be calculated as 0.91*CFA, 

where CFA is the conditioned floor area. 
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303.4.1.7.2.2  Interior Lighting.  Interior lighting in the Rated home assumes that 10% of 

the value determined for interior lighting by the values provided in Table 303.4.1.7.1(1) 

accrue from fluorescent lighting fixtures.  These procedures also assume that only 80% of 

lighting fixtures are located in qualifying locations. As a result, the standard interior 

lighting equation is modified for Rated Home assessment to account for these provisions 

and to provide a variable that accounts for additional high-efficiency lighting, when 

present, in qualifying locations.  This is accomplished using the following equation: 

 

kWh/yr = 0.8*[(4 - 3*qFFIL)/3.7]*(445 + 0.8*CFA) + 0.2*(455 + 0.8*CFA) 
where: 

CFA = Conditioned floor area 

qFFIL  = Fraction of interior fixtures in qualifying locations that are fluorescent or 

LED lighting types, where qFFIL is the ratio of the Qualifying Light Fixtures 

to all light fixtures in Qualifying Light Fixture Locations. 

 

For rating purposes, the Rated Home shall not have qFFIL less than 0.10 (10%).   

 

(Informative Note:  When qFFIL = 0.10 (10%), the above equation reduces to the standard 

interior lighting equation of:  kWh/yr = 455 + 0.8*CFA.)   

 

For the purpose of adjusting the annual interior lighting energy consumption for calculating 

the rating, EULLA shall be adjusted by EULIL, which shall be calculated as the annual 

interior lighting energy use derived by the procedures in this section minus the annual 

interior lighting energy use derived for the HERS Reference Home in Section 303.4.1.7.1, 

converted to MBtu/yr, where MBtu/yr = (kWh/yr)/293.   

 

For Interior lighting, internal gains in the Rated home shall be modified by 100% of the 

interior lighting EULIL converted to Btu/day as follows: EULIL * 10
6
 / 365. 

 

303.4.1.7.2.3  Exterior Lighting.  Exterior lighting in the Rated home shall be determined 

by the following equation: 

 

kWh/yr = (100 + 0.05*CFA)*(1-FFEL) + 0.25*(100 + 0 .05*CFA)*FFEL 

where 

CFA = Conditioned floor area 

FFEL = Fraction of exterior fixtures that are fluorescent, LED or IR-motion/light level 

controlled lighting types 

 

For the purpose of adjusting the annual exterior lighting energy consumption for 

calculating the rating, EULLA shall be adjusted by EULEL, which shall be calculated as the 

annual exterior lighting energy use derived by the procedures in this section minus the 

annual exterior lighting energy use derived for the HERS Reference Home in Section 

303.4.1.7.1, converted to MBtu/yr, where MBtu/yr = (kWh/yr)/293.   
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Internal gains in the Rated Home shall not be modified as a result of reductions in exterior 

lighting energy use. 

 

303.4.1.7.2.4  Garage Lighting.   For Rated homes with garages, garage lighting in the 

Rated home shall be determined by the following equation: 

 

kWh = 100*(1-FFGL) + 25*FFGL 

where: 

FFGL = Fraction of garage fixtures that are fluorescent or LED lighting types 

 

For the purpose of adjusting the annual garage lighting energy consumption for calculating 

the rating, EULLA shall be adjusted by EULGL, which shall be calculated as the annual 

garage lighting energy use derived by the procedures in this section minus the annual 

garage lighting energy use derived for the HERS Reference Home in Section 303.4.1.7.1 

(i.e. 100 kWh/yr), converted to MBtu/yr, where MBtu/yr = (kWh/yr)/293.   

 

Internal gains in the Rated Home shall not be modified as a result of reductions in garage 

lighting energy use. 

 

303.4.1.7.2.5  Refrigerators.  Refrigerator energy use for the Rated Home shall be 

determined from either Refrigerator Energy Guide Labels or from age-based defaults 

provided in Table 303.4.1.7.2.5(1). 

 

Table 303.4.1.7.2.5(1) Age-based Refrigerator Defaults 

Refrigerator Type Annual kWh Equation 

Top freezer (16.0*AV + 355)*VR 

    with TDI (17.6*AV + 391)*VR 

Side-by-side (11.8*AV + 501)*VR 

    with TDI (16.3*AV + 527)*VR 

Bottom freezer (16.6*AV + 367)*VR 
where: 

AV = Adjusted Volume = (refrigerator compartment volume)  

+ 1.63*(freezer compartment volume) 

TDI = Through the door ice 

VR = Vintage Ratio from Table 303.4.1.7.2.5(2) 

 

Table 303.4.1.7.2.5(2) Age-based Vintage Ratios 

Refrigerator Vintage Vintage Ratio 

1972 or before 2.50 

1980 1.82 

1984 1.64 

1988 1.39 

1990 1.30 

1993 forward 1.00 

 

For the purpose of adjusting the annual refrigerator energy consumption for calculating the 

rating, EULLA shall be adjusted by EULFRIG, which shall be calculated as the annual 
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refrigerator energy use derived by the procedures in this section minus the annual 

refrigerator energy use derived for the HERS Reference Home in Section 303.4.1.7.1, 

converted to MBtu/yr, where MBtu/yr = (kWh/yr)/293.   

 

For refrigerator energy use, internal gains in the Rated home shall be modified by 100% of 

the refrigerator EULFRIG converted to Btu/day as follows: EULFRIG * 10
6
 / 365.  Internal 

gains shall not be modified for refrigerators located in unconditioned spaces (e.g. 

unconditioned garages, etc.) 

 

303.4.1.7.2.6  Televisions.  Television energy use in the Rated Home shall be determined 

using the following protocol: 

1) No TV information available – same annual TV energy use as the Reference home in 

accordance with Section 303.4.1.7.1 of this standard 

2) EPA Label information
47

 or number and size of TVs available 

a. TVs shall be ordered in a list to determine TV# by decreasing screen size and 

within the same screen size by decreasing active wattage 

b. The number of Rated TVs in the Rated home shall be a minimum of 1.1 + 

0.51*Nbr 

c. If number of Rated TVs is less than 1.1 + 0.51*Nbr, then remaining TVs (i.e.  

1.1 +0.51*Nbr minus number of Rated TVs), including partial TVs, shall be 

included in the ordered TV list calculated as standard TVs using the following 

formula: 

actWattsSTD = 124 – 69.1*log(10)TV# 

or 50 watts, whichever is greater 

d. If number of TVs is greater than 1.1 + 0.51*Nbr, then each TV shall be included 

in the calculation of Rated home annual TV energy use 

e. If label information is available, active wattage and standby wattage as reported 

on label shall be used for the calculation of annual TV energy use 

f. If label information is not available, standby wattage shall be 4 watts and active 

wattage shall be determined from the diagonal screen size using the following 

formula: 

actWattsTV = 9.21 + 1.17*diag + 0.110*diag
2
 

i. Viewing hours shall be determined on a unit by unit basis using the following 

formula: 

onHours = 6.876 – 7.054*log(10)TV# 

or 0.5 hours, whichever is greater 

j. Total annual Rated home TV energy use shall be calculated using the following 

formula:   

TVkWh/yr = Σ(actWattsTV,i *onHours,i  +  offWattsTV,i *offHours,i )  

+ p*(actWattsSTD,m *onHours,m  +  offWattsSTD,m *offHours,m) 

where: 

i = 1, n = TV#  

n = INT(1.1 + 0.51*Nbr) or total number of Rated TVs, whichever is greater 

                                                 
47

 http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=TV 

 

http://www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_code=TV
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o = 1.1 + 0.51*Nbr or total number of Rated TVs, whichever is greater 

p = o – n (a fractional TV) 

m = n +1 = TV# for partial TV 

 

For the purpose of adjusting the annual television energy consumption for calculating the 

rating, EULLA shall be adjusted by EULTV, which shall be calculated as the annual 

television energy use derived by the procedures in this section minus the annual television 

energy use derived for the HERS Reference Home in Section 303.4.1.7.1, converted to 

MBtu/yr, where MBtu/yr = (kWh/yr)/293.   

 

For television energy use, internal gains in the Rated Home shall be modified by 100% of 

the television EULTV converted to Btu/day as follows: EULTV * 10
6
 / 365.  Internal 

gains shall not be modified for televisions located in unconditioned spaces (e.g. 

unconditioned garages, porches, etc.) 

 

303.4.1.7.2.7  Range/Oven.  Range/Oven (cooking) energy use for the Rated Home shall 

be determined as follows: 

 

1)   For electric cooking: 

      kWh/yr = BEF * OEF * (331 + 39*Nbr) 

2)   For natural gas cooking: 

      Therms/yr = OEF*(22.6 + 2.7*Nbr) 

  plus: 

      kWh/yr = 22.6 + 2.7*Nbr 

where: 

BEF= Burner Energy Factor = 0.91 for induction ranges and 1.0 otherwise. 

OEF = Oven Energy Factor = 0.95 for convection types and 1.0 otherwise 

Nbr = Number of bedrooms 

 

For the purpose of adjusting the annual Range/Oven energy consumption for calculating 

the rating, EULLA shall be adjusted by EULRO, which shall be calculated as the annual 

Range/Oven energy use derived by the procedures in this section minus the annual 

Range/Oven energy use derived for the HERS Reference Home in Section 303.4.1.7.1, 

converted to MBtu/yr, where MBtu/yr = (kWh/yr) / 293 or (therms/yr) / 10, whichever is 

applicable.   

 

For Range/Oven energy use, internal gains in the Rated Home shall be modified by 80% of 

the Range/Oven EULRO converted to Btu/day as follows: EULRO * 10
6
 / 365.  Of this 

total amount, internal gains shall be apportioned as follows, depending on fuel type: 

a) For electric Range/Ovens, 90% sensible internal gains and 10% latent internal gains 

b) For gas Range/Ovens, 80% sensible internal gains and 20% latent internal gains. 

 

303.4.1.7.2.8  Clothes Dryers.  Clothes Dryer energy use for the Rated Home shall be 

determined by the following equation. 

 

kWh/yr = 12.5*(164+46.5*Nbr)*FU/EFdry*(CAPw/MEF  
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- LER/392)/(0.2184*(CAPw*4.08+0.24)) 

where: 

Nbr = Number of bedrooms in home 

FU = Field Utilization factor =1.18 for timer controls or 1.04 for moisture sensing 

EFdry = Efficiency Factor of clothes dryer (lbs dry clothes/kWh) from the CEC 

database 
48

 or use following defaults:  3.01 for electric or 2.67 for natural 

gas 

CAPw = Capacity of clothes washer (ft
3
) from the manufacturer‘s data or the CEC 

database or the EPA Energy Star website 
49

 or use default of 2.874 ft
3
 

MEF
50

 = Modified Energy Factor of clothes washer from Energy Guide Label  

or use default of 0.817 

LER
37

 = Labeled Energy Rating of washer (kWh/yr) from Energy Guide Label  

or use default of 704 

 

For the purpose of adjusting the annual Clothes Dryer energy consumption for calculating 

the rating, EULLA shall be adjusted by EULCD, which shall be calculated as the annual 

Clothes Dryer energy use derived by the procedures in this section minus the annual 

Clothes Dryer energy use derived for the HERS Reference Home in Section 303.4.1.7.1, 

converted to MBtu/yr, where MBtu/yr = (kWh/yr) / 293 or (therms/yr) / 10, whichever is 

applicable.   

 

For Clothes Dryer energy use, total internal gains in the Rated Home shall be modified by 

15% of the Range/Oven EULRO converted to Btu/day as follows: EULTV * 10
6
 / 365. Of 

this total amount, 90% shall be apportioned to sensible internal gains and 10% to latent 

internal gains. Internal gains shall not be modified for Clothes Dryers located in 

unconditioned spaces (e.g. unconditioned garages, etc.) 

 

303.4.1.7.2.9  Dishwashers.  Dishwasher energy use for the Rated Home shall be 

determined using the following equation. 

 

kWh/yr = [(86.3 + 47.73 /EF)/215]*dWcpy 

where: 

EF = Labeled dishwasher energy factor 

dWcpy = (88.4 + 34.9*Nbr)*12/dWcap 

where: 

dWcap = Dishwasher place setting capacity; Default = 12 settings for standard 

sized dishwashers and 6 place settings for compact dishwashers 

 

And the change (Δ) in daily hot water use (GPD – gallons per day) for dishwashers shall be 

calculated as follows: 

 

ΔGPDDW = [(88.4+34.9*Nbr)*8.035 - (88.4+34.9*Nbr) 

                                                 
48

  http://www.energy.ca.gov/appliances/database/excel_based_files/  
49

  http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers 
50

 This value must be determined from the energy rating for clothes washer as it determines the amount of moisture 

remaining in the clothes after the washer cycle is completed. 

http://www.energy.ca.gov/appliances/database/excel_based_files/
http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers
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*12/dWcap* (18.5- 28.5*EF + 12.5*EF
2
)]/365 

 

For the purpose of adjusting the annual Dishwasher energy consumption for calculating the 

rating, EULLA shall be adjusted by EULDW, which shall be calculated as the annual 

Dishwasher energy use derived by the procedures in this section minus the annual Clothes 

Dishwasher energy use derived for the HERS Reference Home in Section 303.4.1.7.1, 

converted to MBtu/yr, where MBtu/yr = (kWh/yr) / 293 or (therms/yr) / 10, whichever is 

applicable.   

 

For the purpose of adjusting the daily hot water use for calculating the rating, the daily hot 

water use change shall be ‗ΔGPDDW‘ as calculated above. 

 

For Dishwasher energy use, total internal gains in the Rated Home shall be modified by 

60% of the Dishwasher EULDW converted to Btu/day as follows: EULDW * 10
6
 / 365. Of 

this total amount, 50% shall be apportioned to sensible internal gains and 50% to latent 

internal gains. 

 

303.4.1.7.2.10 Clothes Washers.  Clothes Washer annual energy use and daily hot water 

use for the Rated Home shall be determined as follows. 

 

Annual energy use shall be calculated using the following equation: 

 

kWh/yr = ((LER/392)-((LER*($/kWh)-AGC)/(21.9825*($/kWh) 

- ($/therm))/392)*21.9825)*ACY 

where: 

LER = Label Energy Rating (kWh/yr) from Energy Guide Label 

$/kWh = Electric Rate from Energy Guide Label 

AGC = Annual Gas Cost from Energy Guide Label 

$/therm = Gas Rate from Energy Guide Label 

ACY = Adjusted Cycles per Year 

and where:  

ACY = NCY * ((3.0*2.08+1.59)/(CAPw*2.08+1.59)) 

where:  

NCY = (3.0/2.847) * (164 + Nbr*45.6) 

CAPw = washer capacity in cubic feet from the manufacturer‘s data or the 

CEC database
51

  or the EPA Energy Star website 
52

 or use 

default of 2.874 ft
3
 

 

And daily hot water use shall be calculated as follows: 

 

DHWgpd = 120.5* therms/cyc * ACY / 365 

where: 

therms/cyc = (LER * $/kWh - AGC) / (21.9825 * $/kWh - $/therm) / 392 

 

                                                 
51

  http://www.energy.ca.gov/appliances/database/excel_based_files/ 
52

  http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers 

http://www.energy.ca.gov/appliances/database/excel_based_files/
http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers
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For the purpose of adjusting the annual Clothes Washer energy consumption for calculating 

the rating, EULLA shall be adjusted by EULCW, which shall be calculated as the annual 

Clothes Washer energy use derived by the procedures in this section minus the annual 

Clothes Washer energy use derived for the HERS Reference Home in Section 303.4.1.7.1, 

converted to MBtu/yr, where MBtu/yr = (kWh/yr) / 293 or (therms/yr) / 10, whichever is 

applicable. 

 

For the purpose of adjusting the daily hot water use for calculating the rating, the daily hot 

water use change shall be calculated as the daily hot water use derived by the procedures in 

this section minus 7.94 gallons per day for the reference standard clothes washer. 

 

For Clothes Washer energy use, total internal gains in the Rated Home shall be modified by 

30% of the Clothes Washer EULCW converted to Btu/day as follows: EULCW * 10
6
 / 

365. Of this total amount, 90% shall be apportioned to sensible internal gains and 10% to 

latent internal gains. Internal gains shall not be modified for Clothes Washers located in 

unconditioned spaces (e.g. unconditioned garages, etc.) 

 

Rating and label data on clothes washer may be found at the following web sites: 

 

EPA:  www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers 

CEC:  www.energy.ca.gov/appliances/database/excel_based_files/Clothes_Washers/ 

 

303.4.1.7.5303.4.1.7.2.11  Ceiling Fans.  If ceiling fans are included in the Rated home, 

they shall also be included in the Reference home.  Three (3)The number of bedrooms plus 

one (Nbr+1) ceiling fans shall be assumed in both the Reference Home and the Rated 

Home.  A daily ceiling fan operating schedule equal to 14 10.5 full-load hours shall be 

assumed in both the Reference Home and the Rated Home during periods when ceiling 

fans are operational.  Ceiling fans shall be assumed to operate only during the cooling 

season, which may be estimated to be all months with an average temperature greater than 

63 
o
F.  The cooling thermostat (but not the heating thermostat) shall be set up by 0.5 

o
F in 

both the Reference and Rated Home during periods when ceiling fans are assumed to 

operate.   

 

The Reference Home shall use number of bedrooms plus one (Nbr+1)three (3) Standard 

Ceiling Fans of 42.6 watts each for total full-load fan wattage of 128 watts (42.6 * 3 = 

128).  The Rated Home shall use the Labeled Ceiling Fan Standardized Watts (LCFSW), 

also multiplied by number of bedrooms plus one (Nbr+1)three (3) fans to obtain total 

ceiling fan wattage for the Rated Home.  The Rated Home LCFSW shall be calculated as 

follows: 

 

LCFSW = (3000cfm) / (cfm/watt as labeled at medium speed) 

 

Where installed ceiling fans in the Rated Home have different values of LCFSW, the 

average LCFSW shall be used for calculating ceiling fan energy use in the Rated Home. 

 

http://www.energystar.gov/index.cfm?c=clotheswash.pr_clothes_washers
http://www.energy.ca.gov/appliances/database/excel_based_files/Clothes_Washers/
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During periods of fan operation, the fan wattage, at 100% internal gain fraction, shall be 

added to internal gains for both the Reference and Rated Homes.  In addition, annual 

ceiling fan energy use, in MBtu/year [(kWh/year)/293] * 3.413x10
-3

), for both the Rated 

and Reference homes shall be added to the lighting and appliance end use loads (EULLA 

and REULLA, as appropriate) given inas specified by Equation 2, Section 303.2.1 of this 

Chapter. 
 

303.4.1.7.2.12  Mechanical Ventilation System Fans.  If ventilation fans are present in 

the Rated Home, EULLA shall be adjusted by adding total annual kWh energy consumption 

of the ventilation system in the Rated Home, converted to MBtu/yr, where MBtu/yr = 

(kWh/yr) / 293.  

 

 

303.4.1.8 If the Rated Home includes On-site Power Production, the Purchased Energy 

Fraction for the Rated Home (see Section 303.2.2) shall be used to determine the impact of the 

On-site Power Production on the HERS Index. 

 

 

 


