Field Data Delivery - Final Report Thermal Performance Field Monitoring of Various Conservation Construction Techniques

Authors

Charles J. Cromer and James B. Cummings

Original Publication

Cromer, C., Cummings, J., "Field Data Delivery - *Final Report* - Thermal Performance Field Monitoring of Various Conservation Construction Techniques", Prepared for Department for Energy and Environment Brookhaven National Laboratory, Upton, New York, Contract No: BNL 119869-S, May 19, 1987.

Publication Number

FSEC-CR-172-87

Copyright

Copyright © Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road, Cocoa, Florida 32922, USA (321) 638-1000 All rights reserved.

Disclaimer

The Florida Solar Energy Center/University of Central Florida nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Florida Solar Energy Center/University of Central Florida or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Florida Solar Energy Center/University of Central Florida or any agency thereof.

Table of Contents

		Page
I.	Introduction	1
· II.	Description of Project Setup	3 8 14 15
III.	Description of Building Performance	18 18 20
	C. Night Ventilation/Daytime Air Conditioning Building Performance D. AC Moisture Removal Results E. Discussion of Results	22 23 26
IV.	Presentation of Simplified Algorithms Predicting Cooling Energy Use	32 32 36 44 47 50 53
v.	Delivery of Rangewood Villas Data	58 58 63
VI.	References	67
Appendix Appendix Appendix	B: Time Outline Of Ventilation Experiments	68 70 71

I. Introduction

An instrumentation and data collection proposal was first made on May 3, 1983 to Brookhaven National Laboratory to study an energy conserving design townhouse in Cocoa, Florida. The approval for funding came on October 16, 1984. The townhouses were designed with energy conservation advice from the Florida Solar Energy Center. During the construction process instrumentation and wiring were placed in the walls and roof of two units (Units A and B) for the data acquisition system. In May 1984 the Rangewood Villas townhouses were completed and by July, 1984 calibration of probes was completed and data collection was begun.

The object of the project during 1984 and 1985 was to obtain an accurate and comprehensive set of data about the thermal and humidity performance of an energy conserving townhouse in a hot, humid climate. This data could then be used to validate building simulation models (e.g., TARP, BLAST, DOE-2), and make modifications to these models.

This data has been analyzed in this report to assess the ability of simplified building cooling load algorithms to predict the air conditioner energy use. Using the parameters of ambient temperature, sol-air

envelope temperature, window solar gain, infiltration gains, slab conduction, and internally generated heat, it was found that monthly air conditioning energy use could be predicted generally within \pm 10% for room temperatures ranging from 73.5°F to 81.5°F. This is presented in Section IV.

The latest phase of this project, carried out during June through October, 1986, collected moisture, data temperature, and energy use on nighttime ventilation and daytime air conditioning. The purpose the impact of nighttime introduced was to assess moisture upon the air conditioner's sensible heat ratio AC moisture removal) and energy use, and the accompanying humidity levels in the conditioned space. Additionally, it is hoped that this data can be used to modify and validate building load simulation models.

II. Description of Project Setup

A. <u>Description of Townhouses</u>

The Rangewood Villas townhouses are located in Cocoa, Florida at 28.40N latitude and 80.60W longitude on the east coast of the Florida peninsula about 10 miles inland from the ocean. They are located near undeveloped land covered by lush tropical vegetation. They were designed with a number of energy conserving design features. The exterior block walls have 3/4" sprayed cellulose insulation behind the sheetrock. The west wall has a vented-skin design with a radiant The roof structure above the cathedral ceilings has a vented space below a radiant barrier and above R-19 glass batt insulation. The attic portion is insulated with R-19 glass batts and a radiant barrier. There are 3 ft roof overhangs on the north and south, and no windows on the east and west.

There are four units in each building. During 1984 and 1985, units A and B were both monitored. In 1986, only unit A was monitored. Each unit has approximately 1200 $\rm ft^2$ of conditioned floor area on two stories. The second floor is open to the living room below and has 355 $\rm ft^2$ in a bedroom, bathroom, vanity room, and two closets (Figure 1). Ceilings are mostly cathedral

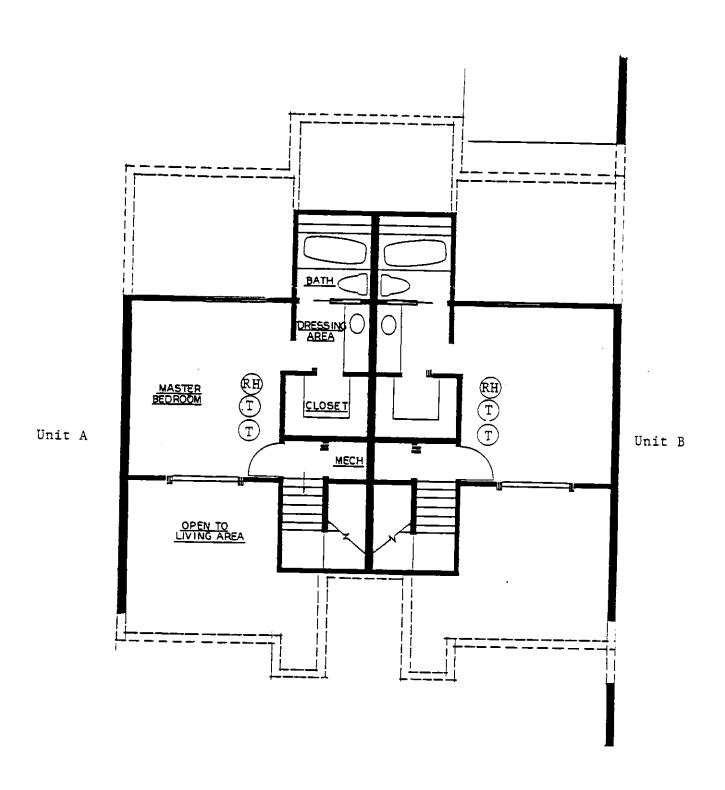


Figure 1. Second Floor Plan of Units A and B Showing the Location of Temperature Sensors (T) and Relative Humidity Probes (RH)

design, except for an area 7' x 30' from front to back of the building along the common wall of the adjacent unit. This forms an attic space where the AC air handler and second story ductwork are located.

The first floor has 820 ft² in a bathroom, vanity room, washer/dryer closet, bedroom, kitchen, and large combined living room/dining room area (Figure 2). The cathedral ceiling in the living room rises upward directly to the open air space of the upstairs bedroom. Because of the open air design there is considerable potential for thermal stratification of air. This does not often occur because the air conditioner keeps the air well mixed. During sunny winter days when neither the neating nor cooling is on, there is a significant thermal gradiant.

The exterior block walls are a cream color stucco (about 865 ft²). Exterior frame walls have wood siding painted brown (about 236 ft²). The roof is tan/brown fiberglass shingles. There is a concrete patio in front of the south and north patio doors. There is a wood trellis over the front patio which blocks about 10 percent of the solar radiation reaching 2/3 of the south block wall. Interior walls are frame construction with white painted sheet rock.

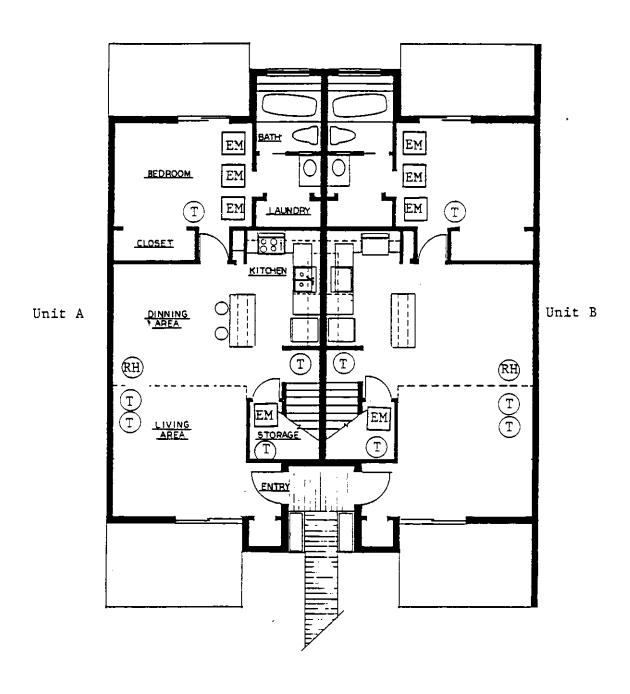


Figure 2. First Floor Plan of Units A and B Showing the Location of Temperature Sensors (T), Relative Humidity Probes (RH), and Electric Meters (EM)

Unit A has not been occupied during this period. It has generally been partially furnished (two couches and one bed), though in 1986 the furnishings varied from none to a great deal. In terms of internal heat generation, Unit A has a 40-gallon hot water heater (heated by a designated heat pump) located in a closet under the stairway, a refrigerator, a Campbell CR7 datalogger, and three small wattage aspirator fans for two relative humidity probes and the datalogger. There are ceiling fans in the bedrooms, the living room, and the dining room which are generally off except during specific experiments. Lights are generally off.

The heat pump system is a York Model E2CPO18A068. It is rated at 18,000 Btu/hr cooling and has a model N2AH010A06A air handler rated at 1000 CFM at .4 inches. The coil is York Model G1AC024AA and the internal heater is Model 2HM0651306A. The compressor and condenser are located in the backyard on the north side of the building. The evaporator and air handler are located in the attic above the upstairs walk-in closet. In the original plans, however, it was designed to be located in a small upstairs closet which was used instead as a linen closet.

B. Building Monitoring Equipment

The Rangewood Villas townhouse units under study were completed in May 1984. During the construction process the wiring and instrumentation were installed. Wiring for sensors and probes was run throughout the walls so that the unit would be as normal in appearance as possible. Data was collected on Units A and B during 1984 and 1985. In 1986, only Unit A was monitored.

Figures 1 and 2 show the floor plans of Units A and B and the location of sensors throughout the structure. There are temperature and relative humidity sensors in zone 1 (downstairs), zone 2 (upstairs), and zone 3 (attic). In zone 1 there are two aspirated temperature probes on the west side of the living (1 thermocouple and I thermistor) and a thermocouple in the downstairs bedroom and at the thermostat. An aspirated relative humidity probe is located in the living room. In zone 2 (upstairs) there are two temperature sensors in the bedroom (1 thermocouple and 1 thermistor) and a relative humidity probe. They are all aspirated. In zone 3 (attic) there are two temperature sensors thermocouple and I thermistor) and a relative humidity probe, all of which are aspirated. The thermocouples are type-T copper-constantan and the RH probes are a

Campbell Scientific Model 207, containing a Phys-Chemical Research PCRC-11 RH sensor and a Fenwal Electronics UUT51J1 thermistor.

The heat pump is instrumented in the following manner. Thermocouples measure the dry-bulb temperature of the air entering and leaving the coil. Model DEW-10 Chilled Mirror Hygrometers by General Eastern measure the dewpoint temperatures entering and leaving the coil. The fan run time is measured by using a small AC to DC transformer that provides a DC voltage to the datalogger whenever the fan is energized. By software control, the datalogger only records the scans of heat pump inlet and outlet temperatures when the fan is on. In this way, the datalogger only averages heat pump "run" data for each 15-minute interval.

Condensate from the heat pump when in the cooling mode is measured by a tipping bucket Model 525, manufactured by Texas Electronics, Inc. As the bucket tips, a switch closure is counted by the datalogger which is converted to ml of condensate.

A thermocouple tree was installed through the cathedral ceiling of the south facing roof of Unit A. A total of 8 thermocouples measure the temperature at the following surfaces (Figure 3):

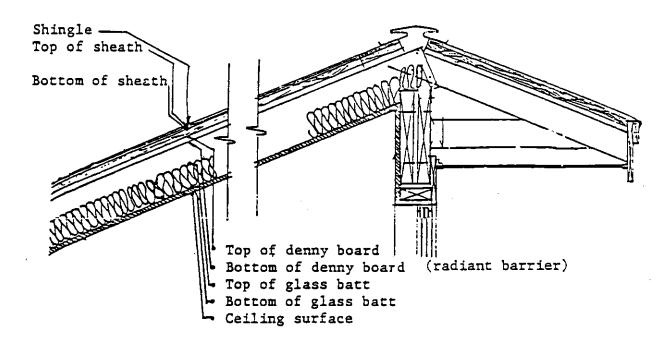
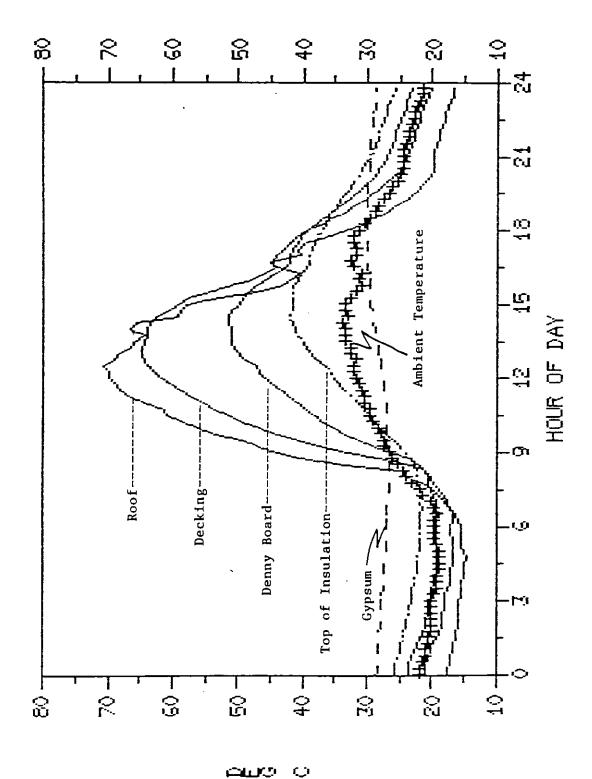


Figure 3. Thermocouple tree in roof.

- asphalt shingle
- top of plywood
- 3. bottom of plywood
- top of denny board
- 5. bottom of denny board
- top of glass batt
- 7. bottom of glass batt
- ceiling surface

The roof is a "vent skin" design. The vented space is located between the denny board and the glass batt. A typical sunny spring day temperature profile through the roof section is shown in Figure 4.


A thermocouple is located at the top of the domestic hot water tank so that the heat transfer to the space can be computed.

Watt-hour meters were installed to measure energy use of specific zones and equipment within the townhouse. Three meters were located near the door to the bathroom at the circuit breaker board on the first floor to measure:

- total house energy
- heat pump energy
- zone 2 (upstairs) energy

Another watt-hour meter was located near the water heater under the stairs to measure the energy use of the hot water heater heat pump. The energy use of zone 1 can be calculated by subtracting the other meters energy

ROOF TEMPERATURE PROFILE 4-28-85

Figure 4.

use from the total energy use.

Zone 1 = Total - Zone 2 - DHW - heat pump

At the beginning of 1986 the instrumentation in Unit B was removed and additional probes were added to Unit A. Several thermocouples were left in Unit B to monitor temperature in the space on the other side of the common wall. Monitoring of Unit A was increased for the 1986 project by adding General Eastern Model DEW-10 Chilled Mirror Hygrometers at the same location as the RH probes to measure dewpoint in Zone 1 (downstairs), Zone 2 (upstairs), and Zone 3 (attic). All the DEW-10s aspirated by small blowers. An additional thermocouple was added at the return grill. In November 1986, six of the probes of the thermocouple tree were removed from the datalogger (temporarily) and in their place were put thermocouples to measure the building surface temperatures at the following locations:

> North block wall South block wall West vent-skin block wall South frame wall West frame wall North roof

These envelope surface temperatures have been used to assess the accuracy of the sol-air method.

C. Weather Station Equipment

A weather station was installed on the west end of the uppermost portion of the roof of Unit A, and on the ground at a height of 4 feet on the west side of the The following equipment was in use during building. 1984 and 1985. On the roof were located barometer, rain gauge, wind speed and direction, solar radiation, sky radiation, and net radiation instruments. The barometer is a Model 7115 unit by Weathertronics. The rain gauge is a Model 525 tipping bucket by Texas Electronics which produces a switch closure each time the bucket tips. Wind speed is measured by a Model 014 Wind Speed Sensor (cup anamometer) and wind direction is a Model 024 Wind Direction Sensor. They are mounted as a single unit and are manufactured by Met-One Inc. The Model 014 produces switch closures while rotating and the 024 produces a changing electrical resistance as it points to different directions. Solar radiation is measured horizontal and on the south roof tilt (220) by two LI-COR LI-200S pyranometers and two Eppley Precision Spectral Pyranometers (PSP's).

The radiant temperature of the sky is measured by an Eppley Precision Infrared Radiometer. It measures the downward longwave radiation in the wavelength range of 3 to 100 μm and provides a hardware temperature

compensation to factor out the upward radiation. A net total radiation measurement is made by a Swissteco Funk-type pyrradiometer suspended 12" above and in the same plane as the roof. This measurement is a balance of the downward shortwave and longwave radiation and the upward reflected shortwave and radiated longwave radiation.

On the ground two aspirated temperature sensors (1 thermocouple and 1 thermistor) and one aspirated Model 207 RH probe monitor the ambient air condition (at 4' elevation). Also, out five feet from the west edge of the house, thermocouples are located in the ground at 24", 12", and 6" depth to record ground temperatures. There is also a thermocouple to record the slab temperature at ground level.

In 1986 a General Eastern DEW-10 Chilled Mirror Hygrometer was installed outdoors with an aspirator. An additional unaspirated thermocouple was also installed to measure the ambient dry-bulb temperature.

D. <u>Data Aquisition Equipment</u>

A Campbell Scientific, Inc. CR-7 measurement and control system datalogger collects the data from the current 62 instrument channels. The CR-7 has been

programmed to scan the 62 channels every 10 seconds. This data is stored in a temporary "intermediate" memory until a 15-minute sum or average is calculated. The 15-minute value is then recorded on an internal "final" memory. In our application, the final memory holds approximately 3.0 days worth of data before the oldest data (e.g., data 3.0 days old) begins to be written over. This internal memory storage has been helpful many times in recovering lost data. For example, if the transmission over the phone lines had errors, the data could be transmitted again up to 3.0 days later. Less than two days of data was lost during the period June 19, 1986 to November 8, 1986.

Since the Rangewood Villas townhouses are 13 miles from the Florida Solar Energy Center (FSEC), data has to be transmitted from the CR-7 datalogger to FSEC by phone lines. The transfer process occurs in the following way:

A Radio Shack TRS-80 Model III 1) micro computer controls a Hayes Smartmodem which calls Rangewood Villas each night at midnight. Α Campbell Scientific, Inc. DC103A Answer Modem answers from Rangewood Villas and downloads the data from the past 24 hours. The data consists of 96 fifteen minute records each with 62 data channels and datalogger number, date, and time for 65 channels

total. The transfer takes place over the phone lines to the TRS-80 Model III. The data is stored on 5 1/4 inch double sided, double density, 96 TPI floppy diskettes. Data transfer and storage is controlled by a BASIC program called "Cromdome". A program "Chanout" produces a printed hardcopy and another called "Costas" converts it to ASCII code in a format which FSEC's VAX computer can accept. All of this occurs automatically each night and is complete by 2:00 A.M. This program software was developed specifically for this project.

2) Each morning a program entitled "KERMIT" is manually run. It transfers the data to the mainframe VAX where it is stored in a raw file in ASCII code on the disk drive system. This raw file is then converted to an INTEGER*2 compressed data format (which saves 80% on storage space) and is added to a large data file which contains all the previous days and months of data. Backup copies of this file are made weekly on tape to protect against a major loss. The 5 1/4 inch floppy disks containing the raw data are also saved as a second backup. More detailed information on the data is presented in the data delivery section of this report.

III. Description of Building Performance

A. <u>Infiltration Testing - Blower Door</u>

Blower door tests were done on the townhouse. The resulting infiltration rates under various pressures are shown in Figure 5. Unit A has an infiltration rate of 9.6 air changes per hour (ACH) at .20 in. H₂0 (or 50 Pa). This result was nearly identical when measured on both August 19 and November 5, 1985 with less than a 2 percent difference recorded.

After the "base case" test was completed, various infiltration sources were covered by masking tape and the house was retested. Infiltration sources were taped up in the following order:

- o AC vents
- o wall plates
- o windows
- o plumbing penetrations, dryer vent, and kitchen exhaust

The results of the tightening of the house were significant, as can be seen in Figure 5 and 6. After all the tightening was done the infiltration rate dropped from 9.6 ACH to 6.2 ACH, a 35.5 percent

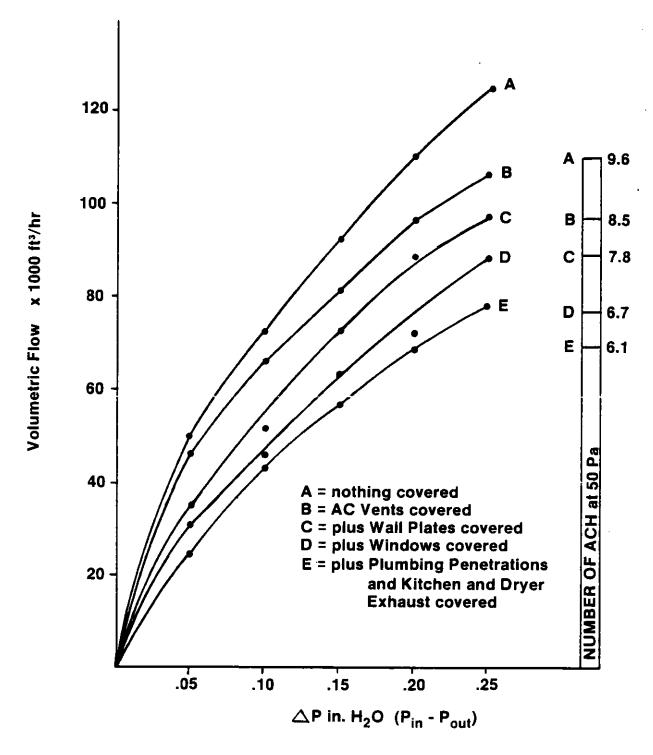


Figure 5. Blower Door Tests at Rangewood Villas (Covering Sources of Infiltration)

reduction. On the average, the AC ducts accounted for 13.6 percent of the leakage, the electrical wall plates accounted for 5.2 percent, the windows accounted for 8.9 percent, and the plumbing penetrations, kitchen exhaust, and dryer vent accounted for 7.8 percent (Figure 6). The remaining 64.5 percent of the leakage was unaccounted for, and came from other sources such as the sillplate and inaccessible penetrations in the wall.

B. Sulfur Hexafluoride Tracer Gas Infiltration Tests

A series of Sulfur Hexafluoride tracer gas infiltration tests were carried out under varying wind and temperature conditions. From these tests it was found that the building infiltration ratio could be characterized as a function of wind speed and air conditioner fan run time (Figure 7). The following equations can be used to estimate infiltration:

AC Blower Off

 $ACH = .095 - .0050 \text{ WS} + .0027 \text{ WS}^2$

AC Blower On

 $ACH = .506 - .0198 WS + .0041 WS^2$

where WS is wind speed in MPH.

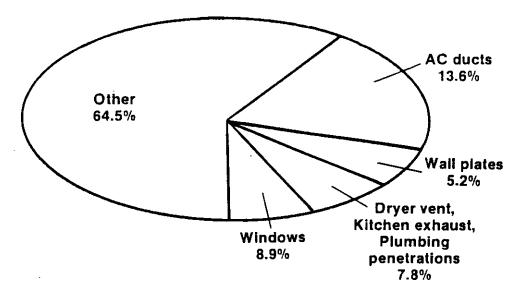


Figure 6. Sources of Infiltration at Rangewood Villas Unit A

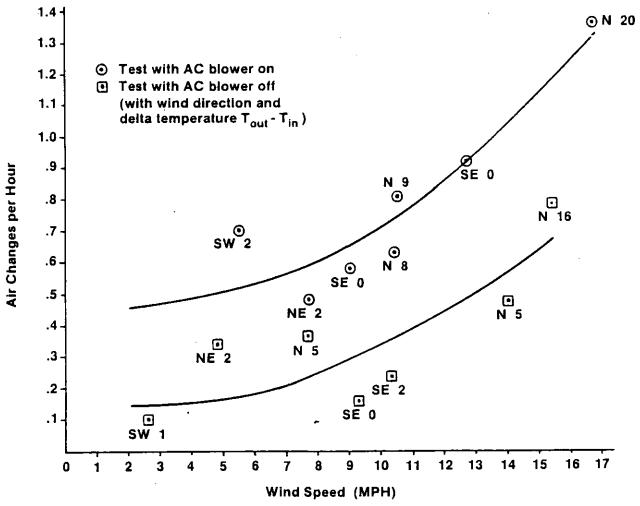


Figure 7. SF₆ Measured Infiltration vs. Wind Speed at Rangewood Villas

C. <u>Night Ventilation/Daytime Air Conditioning</u> <u>Building Performance</u>

During the summer of 1986 (June - October) a series of tests were performed on Rangewood Villas with nighttime ventilation and daytime air conditioning. Test periods ran for 7 to 10 days at 78°F (25.6 C) and 7 to 10 days at $80^{\circ}F$ (26.7 C) thermostat set point and were repeated for four levels (Phases) of interior furnishings. Phase I had no furniture and the carpet was covered by taped sheets of polyethylene. Phase II had no furniture but the carpet was exposed. Phase III had exposed carpet and a moderated level of furniture, papers, magazines, blankets, towels, etc. included many additional furnishings to yield a heavily furnished house. Α complete itemization of furnishings during Phase III and Phase IV is included in Appendix A. At the end of each phase, a five day drying out period (at 80°F) occured during which the AC was on all day. In this five day period, the interior humidity ratio was brought down to approximately the long term equilibrium level. A table of the test schedules is included in Appendix B.

D. AC Moisture Removal Results

Moisture removed by the air conditioner during the daytime hours (8 A.M. to 9 P.M.) differed greatly between Phase I (carpet covered) and the other three phases (carpet uncovered, moderately furnished, and heavily furnished). At the $78^{\circ}F$ (25.6°C) set point, moisture removed jumped from 6.8 liters/day in Phase I to an average of 26.2 liter/day for Phases II through IV. This nearly four fold increase in moisture removal appears to be caused by moisture absorption into the carpet (and other furnishings) during the nighttime ventilation period and desorption during the conditioning period. As can be seen in Table uncovering the carpet provides large moisture absorbing capacity, and adding furnishings does not have a major additional impact. Lower outdoor dewpoints during Phase IV (which has the greatest amount of moisture absorbing furnishings) has the affect of reducing the moisture removed below Phases II and III.

A day-by-day comparison of moisture removal in Phases I and II is shown in Figure 8. Phase II moisture removal is nearly four times as great across the the range of 4 to 11 cooling degree days (base 74°F). The slight downward slope of the best fit lines may be caused by higher evaporator coil temperatures produced

Table 1. Ambient Conditions, Energy Use, and Air Conditioner Moisture Removal for Four Furnishing Levels at Rangewod Villas in 1986

Condensate Moisture (1/day)	8.9	25.9	29.0	23.8
AC Energy Use_(kWh/Day)	14.4	1/.9	17.4	16.4
Ambient Dew point (C)	23.5	7.1.0	24.3	22.5
Cooling Degree Days	6.2	7.3	7.3	9.9
Ambient Dry-bulb (C)	26.8	27.4	27.4	27.0
Phase	Ħ	II	III	Ν

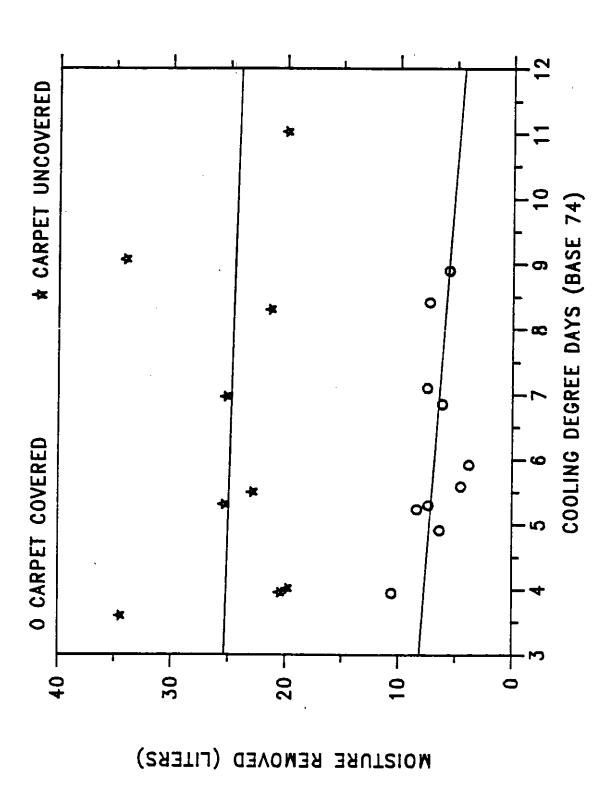


Figure 8. A/C MOISTURE REMOVAL FOR RANGEWOOD VILLA WITH AND WITHOUT CARPET

by higher outdoor dry-bulb temperatures.

In conjunction with greater moisture removal, there is increased air conditioner energy use for the same number of cooling degree days (CDD). In Figure 9 it can be seen that Phase II energy use is about 25 percent greater (about 3.5 kWH) than Phase I at 7 CDD. However, this increase in AC energy use is not as great as might be expected considering the energy required to condense the additional 19.1 liters of water (25.9 - 6.8 = 19.1). At 1050 Btu/lb heat of phase change of water and an air conditioner coefficient of performance of (COP) 2.40 (measured COP), this would equal 5.4 kWh of electricity use. Actual increase in AC energy use is 3.5 kWH, or about 65 percent as much.

E. Discussion of Results

thermodynamic evaluation of the envelope enclosed space does not provide an explanation of the additional energy use recorded at Rangewood. The prevailing theory provides the following description of heat/moisture interation. The moisture vapor enters the building during nighttime ventilation gives heat to the space as it condenses into the furnishings (19.1 liters of water produces Btu/night heat). This heat of phase change was repeatedly measured at Rangewood and can be observed in

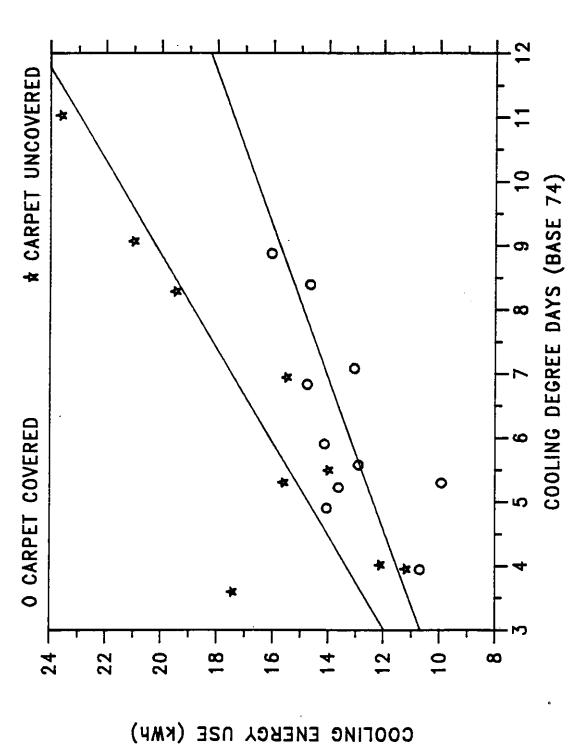


Figure 9. COOLING REQUIREMENTS FOR RANGEWOOD VILLA WITH AND WITHOUT CARPET

Figure 10, with the room temperatures averaging about 2.5°F (1.4°C) warmer during nights when the carpet and furnishings are available to absorb moisture. this heat of condensation is ventilated during the night. With an approximate ventilation rate of 2.5 ACH, average interior temperature of 80.10F, and average ambient temperature of 74°F, there would be 31,900 Btu of ventilative cooling. In the morning when the windows are closed and the air conditioner is turned on, the moisture in the furnishings evaporates providing 44,200 Btu cooling. On net balance, it appears that the cooling load should actually be 11,000 Btu/day less than when the carpet is uncovered. This is because the estimated 31,900 Btu night ventilative cooling when the carpet is uncovered is 11,000 Btu higher than the estimated 20,900 Btu ventilative cooling produced when the carpet is covered and the average interior room temperature is 78.0°F. In actual fact, the cooling load is about 26,000 Btu/day higher when the carpet is uncovered.

This added load at 78°F (see Figure 11) may not be a space defined thermodynamic effect, but one of interaction between the space and the conditioning equipment. The carpeted space should show a thermodynamic gain because the nighttime ventilative cooling removes some additional load. However, the carpeted space daytime load on the AC is shifted from

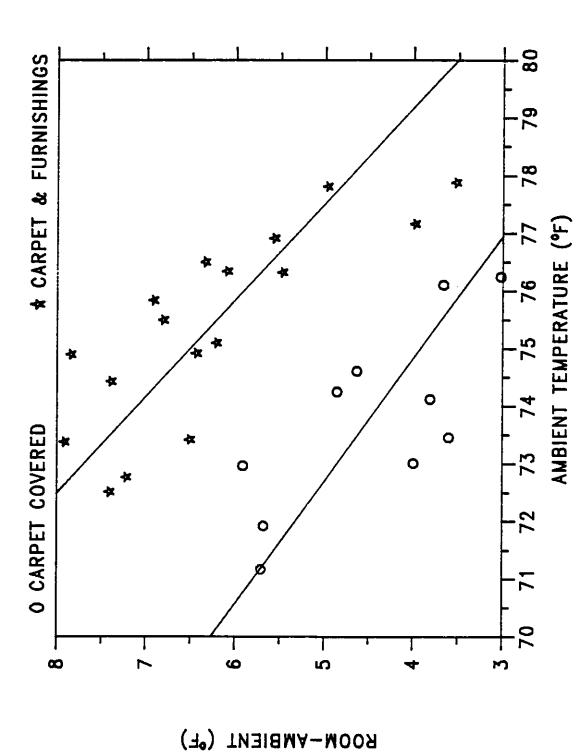
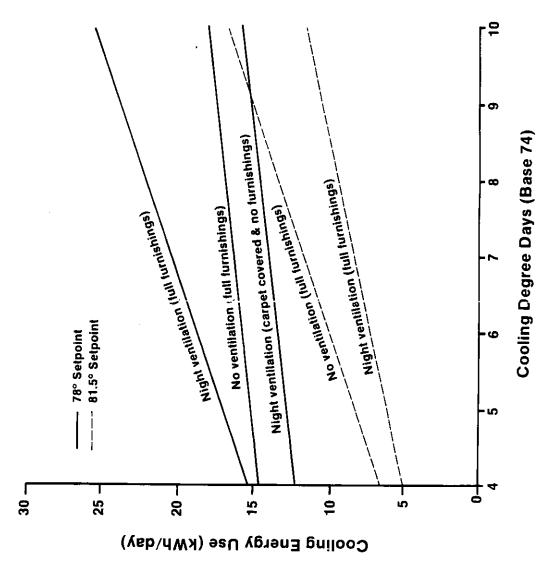



Figure 10. EFFECTS OF MOISTURE ADSORPTION ON ROOM TEMPERATURE DURING VENT

Cooling energy use at Rangewood Villas for night ventilation and no ventilation for two setpoints (78 & 81.5°F) during 1985 and 1986 Figure 11.

predominately sensible to heavily latent. The additional energy use recorded at 78°F setpoint may be the result of the AC equipment's inability to handle this latent load efficiently.

In addition to the interaction of moisture loads on the AC performance, the ventilation rate would logically also have a bearing on the energy use effect of night ventilation. Moist summer nights in the Southeast are typically characterized by low wind speeds, and the Rangewood experiments used only natural ventilation. The higher the ventilation rate, the more heat of sorption that is removed during the vent period. Therefore, it may be economical to run some form of forced ventilation strategy, such as a whole house fan, to improve the performance of night ventilation.

Further research will be required to understand the interaction of equipment response, ventilation rate and thermostat setting on energy savings that may be associated with the transfer of moisture into and out of structures and furnishings. Such understanding will certainly lead to better housing designs and conceivably lead to advanced housing designs and equipment that take advantage of these processes to provide comfortable spaces at minimal energy use (perhaps off peak) within this hot-humid environment.

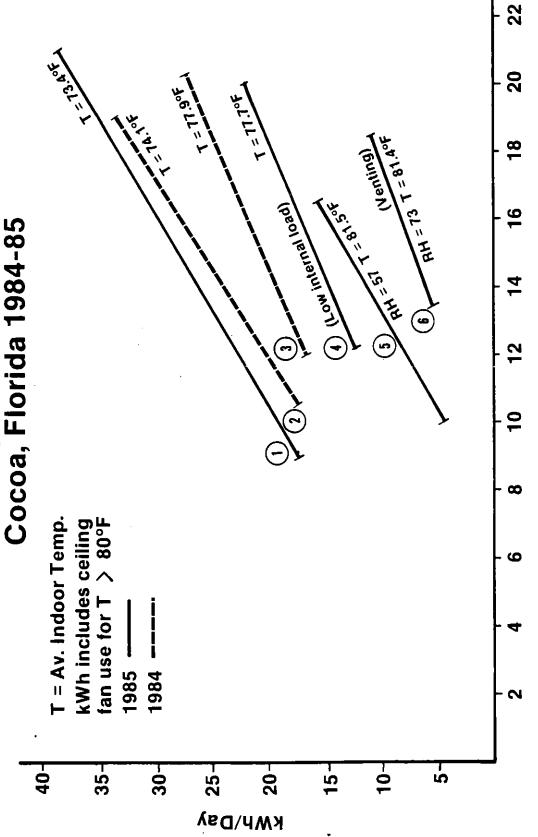
IV. <u>Presentation of Simplified Algorithms</u> <u>Predicting Cooling Energy Use</u>

A. Sensible Cooling Loads

Data collected at Rangewood Villas during 1984 and 1985 has been used to develop and verify ASHRAE algorithms useable in microcomputer programs calculate building cooling loads. Much of the information presented here has been incorporated into a simplified monthly calculation program which is partially complete at this time. Five separate time periods, each with a different thermostat set point are evaluated. Table 2 provides a breakdown of the measured and predicted sensible cooling load for each of these periods. There is an average of 6 percent error in predicting the actual sensible load. The actual sensible load is measured by thermocouples in front of and after the air handler. At the different thermostat set points, from 73.5 F to 81.3 F, there is considerable variation in what portion of the externally generated (non-internal) cooling load derives from which source. The envelope portion of the load generally declines as the set point temperature is raised. The common wall load, the infiltration sensible load, and the slab conduction load also decline in proportion as temperature rises. The window solar load becomes an

Table 2. Reserred and Calculated Sensible Cooling Lond at Rangewood Villas for Five Thermostat Set Points

Percent of Actual	102.2	98.1	112.6	90.7	95.5	7.66
Calculated load MBku/day	145.8	139.7	103.6	112.3	42.0	108.7
Slab Gain kBtu/day	14.1	9.6	2.8 (3.3)	6.1)	-13.8	2.5
Infiltration Bens. Load kBtu/day	12.9	10.5	6.1	e (÷		7.0
Window Solar Gain kBiu/day						
Common Wall Load kBtu/day	 	5.5	-:- -:-:	-1-5 -1-5 -1-5	-2.0 (-16.8)	5
Envelope Load Estu/day	65.2 (52.4)	\$2.3 (\$0.4)	46.8 (55.6)	38.5 (8.0)	(17.6)	6.0
Internal Load kBtu/day	11.4	33.9	19.4	32.9	30.1	27.5
HP Sens. Load EBEL/day	142.6	142.4	92.0	123.8	4.0	109.01
Energy Energy HEAD	25.24	23.72	16.70	20.90	7.96	18.90
op Istal	2.400	2.385	2.359	2.363	2.518	2.405
COP Sensible Total	1.656 2.400	1.759	1.615	1.736	1.620	1.677
Weighted Envelops Temp.	82.9	82.3	84.5	84.3	91.6	83.1
Ambient Temp.	90.2	79.1	61.7	11.4	79.1	8 0.4
Room Temp.	73.5	74.8	17.8	78.8	81.3	27.7
Date	6/18-7/22/85	8/29-9/20/64	7/26-9/09/85	8/04-0/19/84	9/11-9/28/85	Average


In parentheses is a percent breakdown of the non-internal load portion of the calculated sensible load.

increasing proportion of the load at higher set points. The internally generated load also becomes an increasing portion of the load at higher set points. In this study, the internal load was much higher in the two 1984 periods than in the three 1985 periods because the domestic hot water tank was 150 F compared to 110 F. No hot water was used, but the tank heat loss was much greater. The higher internal load caused the air conditioner (heat pump) to operate at a higher sensible heat ratio (SHR) in 1984 (SHR=.737) compared to 1985 (SHR=.673).

The impact of thermostat set point can be seen by a plot of air conditioning energy use versus CDD (base 65 F) Figure 12. The time periods coincide approximately with those of Table 2. These lines in Figure 12 are best fit lines to over 150 days of data. Some conclusions can be drawn from this data. At a 78°F set point, zero AC energy use occurs at about zero CDD using a base 65 F and this occurs with smaller than typical internally generated latent and sensible loads. AC energy use appears to decline by about 7 percent per degree F as the thermostat set point is increased over the range from 73.5 to 81.5 F. Rangewood Villas uses only 45 percent as much air conditioning energy at 81.5° F as at 73.4° F.

Figure 12. Measured A/C energy use vs cooling degree days

Rangewood Villas Cocoa, Florida 1984-85

Cooling Degree Days

During time period number six (see Table 3)
Rangewood Villas was vented at night much like the 1986
tests. Compared to unvented periods at the same room
temperature, total energy use declined by about 40
percent as a result of night venting. Relative humidity
in the space, however, jumped from 57 to 73 percent.

A presentation of the methodology and algorithms used to predict the sensible cooling load follows. Prediction of the sensible cooling load includes calculations for:

- 1. conduction through the building envelope
- 2. solar radiation gain through windows
- 3. infiltration sensible load
- 4. conduction through slab

A.1 Conduction Through Building Envelope

Conduction through the building envelope follows the following procedure. Thermal resistance (R value) for each element is determined using ASHRAE methods for wall sections, roof sections, doors and windows. The envelope's daily average surface temperatures are calculated using the ASHRAE sol-air method.

Rangewood Villas Statistics Table 3.

Int.	Load	(kWh/Day)	7.60	11.20	10.48	6.48	9.84	9.76
oor		H	58.8	9.09	59.0	58.5	57.0	73.3
Indoor	Dry	Bulb	73.4	74.1	77.9	77.7	81.5	81.4
Sun	(Btu/	ft²Day)	1847	A A	A A	1630	1433	1525
door		Œ	87.9	78.7	78.6	86.7	89.0	2.06
Outdoor	Dry	Bulb	80.2	7.67	81.4	81.9	79.1	81.4
		ays	28	19	16	43	18	7
		Dates D	5/26-7/22/85	8/29-9/20/84	8/4-8/19/84	7/24-9/9/85	5. 9/11-9/28/85	6. 10/2-10/13/85
				7	က်	4	5.	9.

First it is necessary to determine the solar radiation impinging upon each of the building's surfaces. If daily solar radiation is known for a horizontal surface, average monthly solar on each surface (\vec{H}_T) can be fairly accurately approximated by a method presented by Klein and Theilacker¹:

$$\overline{H}_{T} = \overline{R} \cdot \overline{H}$$

where

$$\vec{R} = D + \vec{H}_d \quad (1 + \cos (\beta) + \rho (1 - \cos (\beta))$$

where D is the beam portion of the solar falling on an inclined surface. It is defined by a fairly lengthy series of equations which account for the time that the sun rises and sets upon surfaces of various orientations. $\widetilde{H}_d/\widetilde{H}$ is the monthly-average diffuse radiation fraction defined as a function of \widetilde{K}_T , the ratio of monthly-average daily total to extraterrestrial radiation $(\widetilde{H}/\widetilde{H}_O)$ and is calculated by:

$$\vec{H}_{d}/\vec{H} = 1.390 - 4.027 \vec{K}_{T} + 5.531 \vec{K}_{T} 2 - 3.108 \vec{K}_{T}^{3}$$

 β is the tilt of the surface from horizontal.

To check the sol-air methodology at Rangewood Villas, six thermocouples were attached to the envelope

surface at the following locations:

north block wall
south block wall
west vent-skin block wall
south frame wall
west frame wall
north roof

A thermocouple was already in place for the south tilted roof. Solar radiation is also measured in the plane of the south tilted roof.

Measurements were made of solar absorptivity of surfaces at Rangewood Villas and at the Florida Solar Energy Center. An Eppley Precision Spectral Pyranometer was used to measure solar radiation incident upon the surface and (after being turned around) to measure the solar radiation reflected off the surface. A small correction was made to account for shading by the pyranometer. Absorptivities range from .15 for very clean white paint to .90 for dark color fiberglass shingles and gray ceramic tile shingles. A list of measured solar absorptivities are presented in Table 4 (the values for asphalt and brick were obtained from other sources). These values can be used approximations of solar absorptivity in the absense of

Table 4. Solar Absorptivity of Common Building Surface

Painted surfaces

white	.15 -	.30
medium	.35 -	.50
dark	.65 -	.80

R

	medium dark	.3550 .6580
Roof surface	es	
Asphalt	white medium dark	.7075 .85 .90
Tile	white burnt orange gray	.85 .90
Built up	roof white gravel dark gravel	.4055 .7085
Wood shir	ngles new old	.6575 .8090
Hypalon		.2030
Other surfac	ces	
Concrete	new old	.5065 .6075
Asphalt		.8595
1	ight ight red ed	.3550 .5060 .6570
Bare grou	ınd	.7080
Grass		.7580

values in the calculation ο£ measured temperatures. At Rangewood Villas, the cream stucco exterior (on block) measured .45 absorptivity, the brown wood (frame wall) measured .80 absorptivity, and the fiberglass shingles (tan/brown) measured .85 absorptivity. The concrete patios measured .65 absorptivity. The Sol-Air calculation equation from ASHRAE is:

$$t_{ea} = t_{oa} + \alpha/ho (I_{DT}/24) - (\xi \Delta R/ho)$$

where

t_{ea} is the average daily radiation produced surface temperature

 \propto is the solar absorptivity of the surface

 I_{DT} is the total daily solar on a tilted surface (Btu/hr-ft²)

ho is the coefficient of heat transfer by longwave radiation and convection at the outer surface (Btu/hr-ft²-F)

toa is the average daily outdoor air temperature

is the hemispherical emittance of the surface .

△ R is the differential IR radiation between surface and sky/surroundings assuming the surface is black body emitter.

ASHRAE 1985 Fundamentals Handbook (26.4) states that the last term of the equation (R/ho) can be approximated by -7°F for horizontal surfaces and 0°F for vertical surfaces. We found, however, that a view factor adjusted surface temperature depression more closely matched the measured temperatures on non-horizontal surfaced.

$$SKYCOOL = 7 * \frac{(1+COS(B))}{2} * SKYVIEW$$

SKYVIEW is the proportion of the surface's view above the horizon which is unobscured by buildings, trees, etc. From the sol-air equation, predicted envelope surface temperatures are calculated and compared to measured surface temperatures. The results are shown in Table 5 for a 34 day period from November 6 to December 15, 1986. The predicted surface temperatures are generally within 1° F of the measured surface temperatures excepting the frame walls which overlook a hot south-tilted roof (about 10° F above ambient on a daily basis).

Table 5. Measured Vs Sol-Air Calculated Building Envelope Surface Temperatures

Surface	<u>Tilt</u>	Solar Absorptivity	Ambient Temp.	Measured Surface <u>Temp</u> .	Predicted Surface <u>Temp</u> .
South roof South block West block North block South frame West frame North roof	22° 90° 90° 90° 90° 22°	.85 .45 .45 .45 .80 .80	72.8 72.8 72.8 72.8 72.8 72.8 72.8	82.1 79.7 74.5 72.5 87.3 80.0	83.7 79.4 74.4 72.1 85.9 78.2 73.8

^{*} These walls look out over a hot shingle roof, which can account for their elevated temperature.

Using the sol-air envelope surface temperatures, the daily envelope conductive cooling load is calculated for each wall surface, each roof surface, and each door. The window conductive load (apart from solar radiation load) used the ambient air temperature.

 $Q_{surf} = (T_{surf} - T_{room}) * U * AREA * 24 hrs$ The total envelope load is:

The common wall to the adjacent townhouse (Unit B) also produced heat gain or heat loss. Since Unit B was monitored, the temperature difference across the wall was known. When Unit A had a low room temperature (73.5F and 74.8F), there was heat gain to the space. At 78.8 F and 81.3 F room temperature, Unit A was cooled slightly by the adjacent unit.

A.2 Window Solar Gain

Solar radiation entering the building through windows is affected by the transmittance of the window assembly and shading of the window by structures, trees, etc. The following generalized values for transmittance are mostly from the ASHRAE Fundamentals Handbook. Window transmittance is a function of the number of glazings, window tinting or reflective film, window

dressings, and external or internal screens. Each layer of glass reduces solar transmittance by about 15 percent. Tinted glass reduces transmittance by an additional 15 percent. Reflective glass reduces transmittance by about 45 percent. Low-E glass reduces transmittance by about 25 percent. Venetian or vertical blinds reduce transmittance 75 percent when white, 45 percent when medium color, and 25 percent when dark. Roller shades reduce transmittance 60 percent when a light transluscent color, 80 percent when white opaque, and 10 percent when a dark color. Curtains reduce transmittance 35 percent when white thin lace, 70 percent when white, 40 percent when medium color, and 10 percent when dark. External screens block 40 percent of the incident solar over that portion of the window which is covered (this was measured at FSEC). Internal screens can be considered to reduce transmittance 10 percent. The total window transmittance is the product of all the transmittances.

$$T_{window} = T_{glaz} * T_{tint}$$
* 1.0 * (1.0 - DC) + (T_{DRESS} * DC)

* 1.0 *
$$(1.0 - SC) + (T_{SCREEN} * SC)$$

where DC is the portion of the window covered by window dressing and SC is the portion covered by screen.

For example, the transmittance of a window with two glazings, one tinted, with an external screen covering one half the window, and white vertical blinds covering 30 percent of the window area is:

Shading of windows is complex to accurately assess in a microcomputer program. The proportion of the diffuse and beam solar radiation shaded by overhangs on surfaces of arbitrary azimuth can be calculated by methods such as that presented by Robert E. Jones Jr.² The sky diffuse shading does not vary greatly over the seasons and is not too difficult to calculate. Ground reflected diffuse can change significantly at various solar declinations as the proportion of the ground view which is shaded changes. This can be particularly important if a more reflective gound surface is located immediately in front of the window (e.g. patio slab, reflectivity = .35). Shading of beam solar radiation is very season dependent and requires quite complicated calculations. It can be accurately calculated overhangs. Awnings can be difficult. Trees and adjacent structures can be very difficult to asses.

During the test periods at Rangewood Villas, June through September, no direct solar radiation entered the windows because they are on the north and south sides of the building and are shaded by overhangs. There are also no adjacent trees or structures to provide shade. Only shading of sky diffuse and changes in the proportions of the concrete patios shaded had to be determined, and these do not require extensive calculations. Calculated solar heat gain through the windows ranged from 25.8 to 35.8 KBtu/day for the five periods, on the average about 38 percent of non-internal cooling load. Since this is quite a large portion of the sensible load, errors in calculating window solar heat gain can cause significant errors in total predicted sensible load.

A.3 Infiltration Sensible Load

The infiltration rate characterized was Rangewood Villas as a function of wind speed and air conditioner blower run time. This is presented Section III. Infiltration sensible load be calculated from the infiltration rate and the temperature of the room air and ambient air. However, since there is considerable variation in the infiltration rate at different times of the day, using daily average values will produce significant error.

For example, during the period June 18 - July 22, 1985, the infiltration rate was .425 air changes per hour (ACH) during the hours 9 AM to 6PM when the ambient dry-bulb temperature averaged 87.3 F, while it was .270 ACH for the rest of day when ambient temperatures averaged 75.9 F. Infiltration rates are typically twice as high in the afternoon as in the middle of the night at Rangewood Villas. Consequently, to correctly assess the sensible infiltration load there must be a time of day analysis. For three lower thermostat settings (73.5F, 74.8F, 77.8F), a multiplier factor of 1.30 corrects the results obtained by using daily average values. At 78.8 F, the factor is 1.55. At 81.3 F a multiplier does not work. The actual sensible load is slightly negative (-234 Btu/day), while using daily averages produces a large negative sensible load (-2190 Btu/day), as can be seen in Table 6. Computer models using average monthly data will have to consider time of day infiltration cooling loads. In the case Rangewood Villas, using daily average values rather than time of day analysis underestimates the infiltration sensible cooling load by 1400 to 3000 Btu/day for the five periods, with an average underestimation of 2200 Btu/day (about a 2% error in total sensible cooling load.)

Table 6. Time of Day Analysis of Infiltration Sensible Load for September 11-28, 1985

<u>Time</u>	Wind Speed MPH	Fan Run <u>Fraction</u>	${\color{red} {T}^{ ext{T}}}$ amb ${\color{red} {T}^{ ext{room}}}$	Air Changes <u>Per Hour</u>	Sensible Load
3	2.3	.09	-6.8	.13	-541
6	2.2	.06	-7.5	.12	-533
9	3.9	.07	-5.4	.14	-459
12	7.0	.18	1.2	.26	187
15	8.3	.30	5.7	.36	1199
18	6.9	.29	4.2	.30	756
21	3.5	.20	-3.3	.19	-373
24	2.6	.12	- 5.3	.15	-470
Average	4.6	.16	-2.2	.21 Tot	al -234

A.4 Conduction Through Slab

In most of the United States the ground is a source of cooling during the cooling season. In Cocoa, Florida the measured ground temperature at 2 feet depth is about $80^{\circ}F$ during the summer (74°F on an annual basis), and therefore may be a source of heating or cooling depending upon the thermostat setting. However, the ground temperature under a building will not be as warm during the summer as exposed ground surfaces. Kasuda et. al. presented a method in 1982 for Seasonal Heat Loss Calculation for Slab-On-Grade Floors which determines ground temperature beneath the slab and the appropriate slab R-values³. Measured temperatures are presented in Table 7. At Rangewood Villas this method predicted ground temperatures 1 foot underneath the slab that are 2.0°F cooler than the measured soil temperatures 5' west of the west end of the building at one foot depth. Following is a brief overview of the Kasuda method.

Thermal conductance for the slab is first calculated.

	hr·ft ² · F/Btu
Inside surface resistance	0.6
Carpet	1.0
Pad	1.4
4" Concrete	.3 .
	3.3

14.95 7.68 1.05 0.00 7.11 29.78 24.18 17.69 11.61 6.69 4.03 11.04 **ENE**B_EA 13.03 14.70 18.79 19.41 23.76 20.40 20.30 17.51 16.91 15.47 112.24 04 16. **JATNOZI 70H** SOLAR 22.81 23.74 24.59 25.26 26.73 23.06 23.75 25.63 26.84 27.41 .79 1985 dΩ ROOM Pump Energy Use (kWH/Day) at Rangewood Villas during Ground Temperatures (0 C), Room and Ambient Air Temperatures (0 C), Solar Radiation (MJ/M 2), and Heat 21.68 22.81 24.04 24.86 26.38 23.05 23.76 25.30 27.18 27.18 24.37 DOMN ROOM 13.28 17.24 20.51 21.60 24.79 26.97 27.04 27.58 22.80 15.08 26.33 22.49 LEWb. **TNBIBMA** 17.99 18.33 22.09 24.50 26.05 26.33 27.03 26.25 23.89 20.31 23.38 1 2 5 d 11 екопир .35 23. "SI 9 СКОПИВ 16.89 17.99 21.24 22.16 24.80 26.44 26.29 26.29 19.29 23.28 "a 9 СКОЛИВ 17.42 19.16 22.27 23.02 25.86 26.40 26.42 27.17 26.83 26.46 .70 EDCE SLAB Month September / February November December October January Average August Table April March July June May

 $U_{\mbox{floor}}$ is equal to .30 (1/3.3). Next, the soil conductance is determined by k/Z, where k is the soils thermal conductance and Z is the soil's depth. $U_{\mbox{ground}}$ is .5/1.0 or .5 Btu/hr·ft²·F. Several temperatures are defined:

 T_m is the mean annual air temperature (71.8 F)

B is the typical difference between the warmest and coldest month (21.5 F)

 T_R is the mean annual room temperature (75 F)

C is one-half the difference between cooling season and heating season room temperature (78-72 F)/2 (3.0)

The slab dimensions are defined: 2a is the length, and 2b is the width.

The equation which predicts soil temperature under the slab is then solved.

$$T_z = T_m + (T_R - T_m) \theta'_{1m} + B\theta'_{2m} + (C - B)\theta'_{3m}$$

Three terms must be defined; θ'_{1M} , θ'_{2m} , and θ'_{3m} .

 $\theta'_{\mbox{lm}}$ is the annual average temperature rise function found in given figures, or can be approximated by the following relationship

$$\theta'_{1M} = e^{\frac{7.08}{2}}$$
 [3.312-3.324 $(\frac{b}{a})$ +1.476 $(\frac{b}{a})^2$]

 θ'_{2m} is the annual cycle of undisturbed earth temperature, which is calculated by the following equation:

 θ'_{3m} is the annual cyclic temperature effect upon the sub-slab temperature. It is more easily found in three lookup figures, but can be solved by a lengthy series of equations which will not be reiterated here.

The final calculated ground temperature one foot below the slab and the resulting heat gain or loss for the five periods are shown in Table 8. For the typical thermostat set point of $78^{\circ}F$, heat gain or heat loss during the cooling season can be considered negligible. However, at 73.5 F room temperature, slab heat gains (if we believe the calculations) represent over 11 percent of the non-internal load. At 81.3 F room temperature, the slab reduced the non-internally generated sensible cooling load quite significantly by 54 percent.

B. Prediction of Latent Cooling Load

Latent cooling load at Rangewood Villas is limited largely to infiltration moisture since there are no occupants in the townhouse. There is no significant

Table 8. Ground Temperatures (F) and Slab Heat Gain or Loss (kBtu/Day) at Rangewood Villas Based on Kasuda Method

	<u>Date</u>	Measured Ground <u>Temp.</u>	Calculated Ground <u>Temp.</u>	Adjusted Ground <u>Temp.</u>	Heat <u>Gai</u> n
I.	85169-203 7/5 (73.51)	79.30	77.6	77.3	14.1
II.	84242-264 9/10 (74.80)	79.11	78.0	77.1	8.6
ITI.	85207-252 8/21 (77.85)	80.76	78.6	78.6	2.8
IV.	84217-232 8/13 (78.76	81.36	78.6	79.0	.9
٧.	85254-271 9/20 (81.30)	79.70	77.6	77.6	-13.8

water use in the house except for the toilets. Calculations indicate that about .9 lb of water evaporate from the two toilets each day, or about 900 Btu/day latent load. This should not add to the total load because as the water evaporates it provides sensible cooling.

The internal and ambient dew point temperatures are known at Rangewood Villas because they are measured. Since the infiltration rate can be reasonably accurately approximated from the equations in Section III, the latent cooling load produced by infiltration can be calculated by the following equation.

$$Q_{latent} = (W_A - W_R) * ACH * Volume * Density$$

The calculated latent load agrees quite well with the measured condensate. If the .9 KBtu/day latent load from the toilets is added, the average calculated latent load for the five periods is 98 percent of the measured latent. This can be seen in Table 9. For the five periods the Sensible Heat Ratio (SHR) is .71 (29% is latent load).

However, for most buildings, the internal dew point is not known. Therefore the infiltration latent load cannot be determined. If the building infiltration rate

Table 9. Datailed Calculations of Latent Cooling at Rangewood Villas for Five Periods

# -	-	_			-	-	_	_	_
	200 En Cea	Latent Lond	kBtu/Day	64.1	50.6	45.4	44.7	24.4	45.2
-	-	_	-	_	_	_	_	_	_
		Latent Load	kBtu/Day	67.6	50.6	40.1	42.2	E7.0	43.5
	_	_	- 1	-	-	-	-	-	-
	F04708	l Ory	Air/Day	1 6257	6237	4640	5441	3796	6274
	_ :	_	_	-	_	_	_	_	_
	AIT SPEC.	Volume	11/ ₂ :1	13.85	13,70	13.79	13.83	13,69	13.77
# -		- -	-	-	-	-	-	-	_
	¥	Changes/	Hour	300	.31	.233	.274	192	562
# -	-	-	- e	-	-	-	-	-	-
- 11	5	Ē	Fraction	.624	484	343	425	165	.380
3	2	- 50	- =	-	-	_	-	-	_
		Spend	Ŧ	8	7.	œ.	8.	₹.	e,
ij		f y	-	_	-	-	•		•
	H00H	Humidity	Retio	.0104	0110.	.0118	.0122	.0126	9110.
1	=	t,	-	-	-	-	-	-	-
	And the	them id it y	Rat to	.0183	.0180	.0184	.0183	.0183	.0189
11 -	_	-	_	-	_	_	_	_	_
		Room	Dew Point	58.1	69.4	67.5	82.8	83.6	61.0
ii .	-	_	ır -	-	-	-	_	-	_
12 = 2 = 2 = 2 :		Room Ambient Ambien	femp, I Temp, I Dew Pot	74.1	75.2	7.97	75.8	74.1	74.8
4 .	_	1	-	_	_	-	_	_	_
	_	Ambia	l Temp	80.8	1 79.7	1 81.7	1 81.4	1 79.1	1 77,2 1 80.4
į		E	ģ	10	8	8	Θ,	e.	o,
H.	_	2		23	1 74	1 77	1 78	- 61	177
	_	-	1 Date	1 1 1 6/18-7/22/85 1 73,5 1 80.2	1 8/28-8/20/84 1 74.8	1 7/26-9/09/85 1 77.8	1 8/04-8/19/84 1 78.8	1 B/11-9/28/84 1 81.3	_
				_	11	1111	2	>	Ave.
ii ·	-	-		<u>.</u> –	-	-	-	-	-

and internally generated moisture are assumed, and air conditioner operating characteristics are known, then the infiltration latent load and the AC SHR can be determined iteratively.

Based on assumptions of generated moisture and infiltration rates, an iterative solution to the AC latent load can be made. Room and ambient dry-bulb temperatures and ambient dew point temperatures are known. Estimate the room wet-bulb temperature. Based on an estimated room wet-bulb temperature, calculate the infiltration latent load. Also at the estimated room wet-bulb temperature determine the latent cooling fraction from the AC machine data. See if this latent cooling matches the sum of infiltration and internal generated moisture. If it is too high or too low, lower or raise the (respective) estimated room wet-bulb and recalculate the latent load till it matches the infiltration and internally generated moisture. A more detailed explanation of this method for determining SHR, total moisture removed, room humidity conditions, and total energy use is presented in a paper by Khattar.4

V. <u>Delivery of Rangewood Villas Data</u>

A. Data File Format

The data collected at Rangewood Villas during the night ventilation/day air conditioning tests during the summer of 1986 has been processed from 15 minute to hourly data and placed in two separate files: WEATHER and BUILDING. A total of 62 channels of data was recorded by the datalogger, but only 47 are being included on the tapes because of sensor redundancy; 14 on the WEATHER file and 33 on the BUILDING file.

Data was collected continuously during the summer. During the 110 days from the beginning (6/19) to the end (10/13) of the summer ventilation test, only 1.54 days of data was lost. The two periods of lost data occurred on:

July 10, 12:30 EST - July 11, 09:00 EST (20.75 hours)
July 15, 16:30 EST - July 16, 07:45 EST (15.5 hours)

Three additional 15 minutes scans were lost.

The format of the WEATHER file is shown in Table 10. It follows the SOLMET data format. Data is provided for only portions of the format (other fields will be blank). The following data is included:

- Solar time computed by equation of time and longitude correction.
- Local standard time recorded by Campbell Scientific, Inc. CR7.
- 3. Global solar radiation on 22° south facing tilted surface of roof at Rangewood Villas (KJ/m² hr).
- 4. Global solar radiation on horizontal $(KJ/m^2 hc)$.
- 5. Weather as rainfall in mm.
- 6. Barometric pressure measured at the Florida Solar Energy Center by a Weathermeasure Model 7105-A. This is the only data not measured on site.
- 7. Ambient dry-bulb temperature measured by 1) an aspirated thermocouple (OC) and 2) an unaspirated but radiation shielded thermocouple (OC).
- 8. Ambient dew point temperature measured by an aspirated General Eastern DEW-10 Chilled Mirror Hygrometer with external heating of ambient air

able 10. Weather Tape Format

IDENT	IDENTIFICATION	NO.					_ -			Solar	Radia	tion	Obser	Radiation Observation	1	 				
De la	I WBAN		Solar	r Time		1	ISI	ETR	-3			Rad	Radiation		Values	KJ/m ²	12			S
Deck	NIS :	I YR	1 MD	I DY	HRMIN		TIME	kJ/m/	~1 14 OL:	ΩН	1 D	Z X	E H		- ENG		SILD	A	Ф	
	 -		 -	 -		 -		 -	72 \$ 70	~ 6	E4 [E	17 =	 -	 -	- -	SOR			
		-			-0				·4 ·5:*	ن <u>ب</u>	i D	<u></u>	- E	7 2				·		 E H
	 -	 -	 -	~		→ -		- 4 -	 -	H	S =	 -	Q -		 -					z
XXXX	! ! xxxxx		- '	×	XXXX		XXX	XXXX	-• •	ixxxx	lixxx	ı ci ixxx	x! ixx	xxlix	i E i i i ixxxxlixxxxlixxxxlixxxxlixxxx		i i ixxxxlixxxxl	ixxxxi	ixxxx	- xx
001	002	003				004	4	101		102	103	104	105	106	5 107		108	109	970	11.1
SURFA	SURFACE METEOROLOGICAL OBSERVATION	OROLOG	ICAL C	BSERV	ATION			# # # #					11 11 11 11 11		OTHER		MEASUREMENTS	WES	 	
ပ ပ	Sky 1 Cond.	DRY BULB	l WEATH	WEATHER Rain	PRESSURE kPa	SSURE kPa		TEMP OC	: 	ONIM	CLOUDS		- S		FUNK kJ/m		GRO 6" 6	GROUND TEMP ^{OC} 12" 24"	MP OC	SLAB
н д н					SEA 1	STA- TION	I DRYI IBULBI	YIDEW BIPOINT	l D	I S	 0.e 4	4 4 0								
ZU										_ =			 0		. =	. 		- 	, 	
! 								→ →					N I				→ →			
l Ixxxx	XX 1XXXXI 1 XXXX	××××	i Ixxxxxxx	xxxx 1	i IxxxxxIxxxxx	XXXXX	l lxxxx	i xixxxi		l xxxlxxx	1 xx :	x	~ ×	XXXXX	I xxxxx		1 XXXX	xxxx	XXXX	l xxxxl
201 202	201 202 203 204 205 206	204	205	5	206		207	7	203	3	209	2	210	301	302	3	303	304	305	306

ELEMENT.	Tape Deck Number WEAN Station Number Solar Time (Year, Month, Day, Hour, Minute Local Standard Time (Hour and Minute)	Extraterrestrial Solar Radiation Direct Solar Radiation Diffuse Solar Radiation Net Solar Radiation Global Solar Radiation on a Tilted Surface	Global Solar Radiation on a Horiz. Surface — Observed Data Global Solar Radiation on a Horiz. Surface — Engineering Corrected Data Global Solar Radiation on a Horiz. Surface — Standard Year Corrected Data Additional Solar Radiation Measurements Minutes of Sunshine	Time of Collateral Surface Observation (LST) Ceiling Height (Dekameters) Sky Condition Temperature Dry-bulb (unaspirated) Weather (Rain-imm) Pressure (Kilopascals) Temperature Dry-bulb and Dewpoint in Celsius (aspirated) Wind Speed (m/s) and Wind Direction Clouds (Tenths of Total and Opaque Sky Cover) Snow Cover Indicator	Precision Infrared Radiometer FUNK-type Pyrradiometer Ground Thermocouple 6" (Degrees Celsius to Tenths) Ground Thermocouple 12" (Degrees Celsius to Tenths) Ground Thermocouple 24" (Degrees Celsius to Tenths) Slab Thermocouple (Degrees Celsius to Tenths) pes. pes.
સ	Tape D WBAN S Solar Local	Extrat Direct Diffus Net Sc Global	Global Sola Global Sola Global Sola Additional	Time of Ceiling Sky Cor Tempera Weather Pressur Tempera Wind Sky Clouds Show Co	Precisi FUNK-ty Ground Ground Slab Th tapes.
NUMBER OF DECIMAL PLACES	(0)	(0)	(1)	(5,0) (2,0) (2,0)	(1) (1) (2) (2) (2) (2) (2) ncluded or
TAPE POSITIONS	001 - 004 005 - 009 010 - 019 020 - 023	024 - 027 028 - 032 033 - 037 038 - 042 043 - 047	048 - 052 053 - 057 058 - 062 063 - 072 073 - 074	075 - 076 077 - 080 081 - 085 086 - 089 090 - 097 098 - 107 108 - 115 116 - 122 123 - 126	301 128 - 132 (1) Pres 302 133 - 137 (1) FUNI 303 138 - 141 (2) Grol 304 142 - 145 (2) Grol 305 146 - 149 (2) Grol 306 150 - 153 (2) Slal FORMAT follows that of SOLMET data tapes Asterisk indicates data included on this
TAPE FIELD NUMBER	001 002 * 003 * 004	* 101 102 103 104 * 105	* 106 107 108 109, 110 111	201 202 202 8 * * 203 204 205 210	* 301 * 302 * 303 * 304 * 305 * 306 1 FORWAT follo * Asterisk ind

Table 10. Weather Tape Format (Continued).

stream to maintain operating RH well below 95 percent.

- 9. Wind direction measured by the Met-One Inc. Model 024 Wind Direction Sensor.
- 10. Wind speed measured by the Met-One Inc. Model 014
 Wind Speed Sensor.
- In addition, the Precision Infrared Radiometer, ground temperatures at 6", 12", and 24", and the building slab (west edge) temperature are included.

The instrumentation was generally considered reliable. The aspirated dry-bulb temperature was found to be reading significantly high during the period 6/19 - 7/15 (11:00 A.M. EST). This data has been replaced by the temperatures from the unaspirated dry-bulb sensor, corrected to account for radiation affects by correlation with the aspirated dry-bulb after it was adjusted by use of the following equation:

$$T_{db}$$
, corrected = -8.47 + 1.75(T_{db} , UA)
-0.016(T_{db} , UA)²

where $T_{\rm db,UA}$ is the unaspirated thermocouple. During the period 6/24-6/27 0700 hour EST, as a result of programming error, the nighttime (2000-0700 EST) dry-bulb temperatures were not recorded by the

unaspirated thermocouple. During those hours, corrected aspiratd thermocouple temperatures are included. In addition, late in the summer it was discovered that the wind speed probe was reading lower values apparently because of higher friction. Therefore, the algorithms predicting infiltration as a function of wind speed will underpredict infiltration during 1986.

B. BUILDING FILE

This file contains 33 channels of data, 29 in Unit A and 4 in Unit B. The format of the BUILDING file is shown in Tables 11 and 12. In Unit B only four dry-bulb temperatures were recorded in 1986 (in previous years it had the same instrumentation as Unit A). Unit A has 5 room air temperature measurements: living room (zone 1), thermostat, downstairs bedroom, upstairs bedroom (zone 2), and attic (zone 3). There are RH and dew point probes in zones 1, 2 and 3. The heat pump is monitored with dry-bulb and dew point temperatures into and out of the air handler. Air conditioner condensate and blower run times are measured.

Four watt-hour meters measure total, heat pump, domestic hot water, and zone 2 (upstairs) electricity use. A series of 8 thermocouples measure temperatures

Table 11. Building Tape Format

UNIT A

		1	i zone		TEMPERATURES	. [-	ZONE	ZONE DEMPOINTS	NTS	-		HUMIDITY
)lar MO!D	Solar Tine 1 LST YRINOIDY!HR4N!TIME	LST	I L.R.	I BRU II Zone I	1 Atti 21 Zone 1	BRO		LR Zone 1	I BRU IZone 2		1 RH 31 Zone 1	1 RH 11 Zone 1	1 RH 21 Zone 3 1
XXIX	XX XX XXXXI XXXX XXXX	XXXX	XXXX	IXXXX	IXXXX	I XXXX I	I XXXX I	I XXXX	IXXXX	IXXXX	1 XXXX	IXXXX	IXXXX
003		004	101	102	103	104	105	106	107	108	109	110	111
								,					
			-	DHW	POWER USE	USE							
COIL TEMPERATURES DRY I DRY I DEW I DEW I BULB! BULBIPOINT!POINT! IN I OUT I IN I OUT I		RETURN 1 GRILL 1 DRY 1 BULB 1	CON- DEN- SATTE	FAN FON TIME	1 Tremp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, _, _, _, _,	I PUMP I PUMP I	T ! DHW P !	W ! ZONE ! !	 -	ZONE 2		
!xxxx !xxxx	KX I XXXX		XXXX	l xxx	Ixxxx	! xxxxx	IXXXXX	x lxxxxx		- XXXXX	XXXXX		
204	1 205		206	207	208	301	302	303	304	8	305		
						UNIT B							
THERMOCOUPLE TREE						ZOME TI	ZONE TEMPERATURES	URES	 -				
OT 1 VATHIE	TOP 1 BOT 1 TOP 1 BOT 1 TOP 1 BOT 1 SHEATHISHEATHIDENNYIDENNYIGLASSIGLASSI	SOT 1 ENNY 16 DARD 1B	TOP 1 GLASSIG BATT 1B		BOT: 1 L.R GYP-1 ZONE SUN 1	I BRU E 11 ZONE	- 22	ATPIC 1	BRO I				
XXXX IX	XXXX IX	xx lx	IXXXX IXXXX IXXXX		xxxx xxxx	XXXX	K LXXXX	-•• 	XXXX				
403	404	405	406]	408 501	1 502	2 503	13	504				

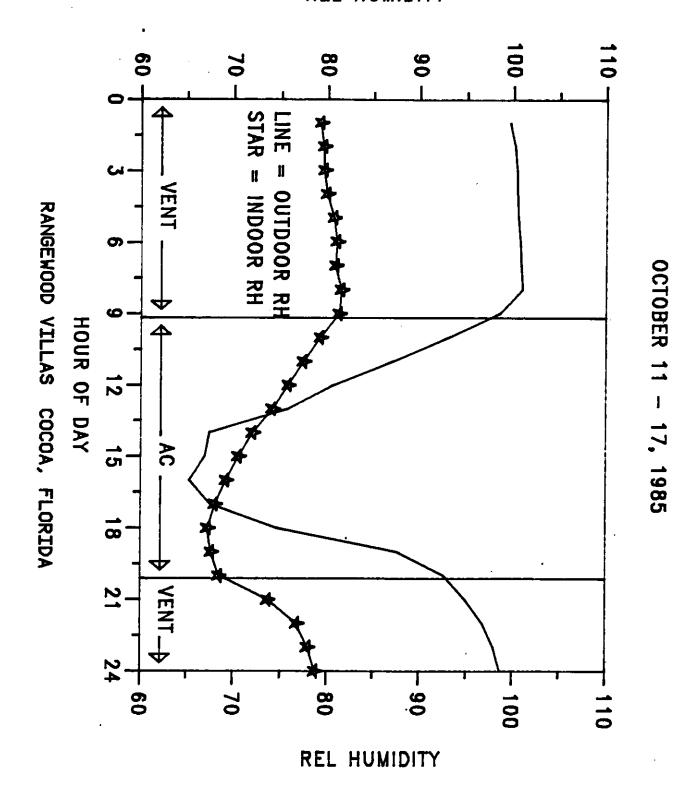
Table 10. Weather Tape Format 1

20	₩X XHΩ X	1	- 09	×		- - ∥
201 202	 	SURF	100	XXXX	Tape Deck #	IDE
203	C i Sky i E iCond. i I I I I I I I I I I I I I I I I I I	ACE M	002	 	~ +- +- +- +- 	IDENTTFI CATTON
204	ii	ETEOR	ii 13 15	1 XXXXX 1 XXXXX 1 1 I	WBAN !	ATTON
4	#	DLOGI	003	×	YR	
205	WEATHER Rain mm	SURFACE METEOROLOGICAL OBSERVATION		×	Solar T	
206		RVATI		* 	Time I DY I	
9		Q.		xxxx	HRMIN	
			004	XXXX XXXX	I IST	
207	I PEMP I OC I DRYIDEM IBULBIPOINI I I		101	·- ·- ·- ·- ·-	·	
	‼		ì	XXXX	ETR kJ/m²	
208	WIND C		102	Lix TCE	ם ה	8
209	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		2 103	XX		Solar R
	X I XX TI OODS A I Q I I E I E I E I E	i)3	E I	T I I	adiati
210	× × × × × × × × × × × × × × × × × × ×		104	I I I	Radiation N ! T E ! I T ! L	Radiation Observation
301	XXXX		105 10	! T ! I ! ! D ! ! ! ! D ! ! !	tion T	serva
		•-	106	xxxi i i i Z i I	Values ! H ! ! O !	===== tion
302	FUNK kJ/m²	CIHER	107	XI	LENG I ENG I COR	!! !! !!
ω	× 6	€ MEAS	7		KJ	
303	GRO 6"	OTHER MEASUREMENTS	108	ixxxx!	DE SID	
304	OUND T	SIN	109	1xxxx	A	
305	3ROUND TEMP OC 1 12" 1 24" 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		110	ixxxxi ixxxxi ixxxxi i i i i i i i i i	В	!! !!
305 306	I SLAB		111	XX XX I I I I I I I I I I I I I I I I I	SOS	
		·- II	·-			ii

Tape Deck Number WBAN Station Number Solar Time (Year, Month, Day, Hour, Minute Local Standard Time (Hour and Minute)	Extraterrestrial Solar Radiation Direct Solar Radiation Diffuse Solar Radiation Net Solar Radiation Slobal Solar Radiation on a Tilted Surface	Global Solar Radiation on a Horiz. Surface - Observed Data Global Solar Radiation on a Horiz. Surface - Engineering Corrected Data Global Solar Radiation on a Horiz. Surface - Standard Year Corrected Data Additional Solar Radiation Measurements Minutes of Sunshine	Time of Collateral Surface Observation (LST) Ceiling Height (Dekameters) Sky Condition Temperature Dry-bulb (unaspirated) Weather (Rain-mm) Pressure (Kilopascals) Temperature Dry-bulb and Dewpoint in Celsius (aspirated) Wind Speed (m/s) and Wind Direction Clouds (Tenths of Total and Opaque Sky Cover) Show Cover Indicator	Precision Infrared Radiometer FUNK-type Pyrradiometer Ground Thermocouple 6" (Degrees Celsius to Tenths) Ground Thermocouple 12" (Degrees Celsius to Tenths) Ground Thermocouple 24" (Degrees Celsius to Tenths) Slab Thermocouple Slab Thermocouple	this tape.
(0)	(0) (1)	9	(5,0) (2,0) (2,0) (3,0)	(1) (2) (2) (2) (2) (3) (4) (4) (5) (6) (7) (7) (8) (7) (8) (9) (1) (1) (1) (1) (2) (3) (4) (4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	II data ta luded on tl
001 - 004 005 - 009 010 - 019 020 - 023	024 - 027 028 - 032 033 - 037 038 - 042 043 - 047	048 - 052 053 - 057 058 - 062 063 - 072 073 - 074	075 - 076 077 - 080 081 - 085 086 - 089 090 - 097 098 - 107 108 - 115 116 - 122 123 - 126	128 - 132 133 - 137 138 - 141 142 - 145 146 - 149	FORMAT follows that of SOLMET data tapes. Asterisk indicates data included on this
001 002 * 003 * 004	* 101 102 103 104 * 105	* 106 107 108 109, 110	201 202 203 204 204 * * * 205 * * 205 * 200 210	* * 301 * * * 302 * * 304 * 305 * 306	l FORMAT follo * Asterisk ind

ELEVENT.

NUMBER OF DECIMAL PLACES


> TAPE POSITIONS

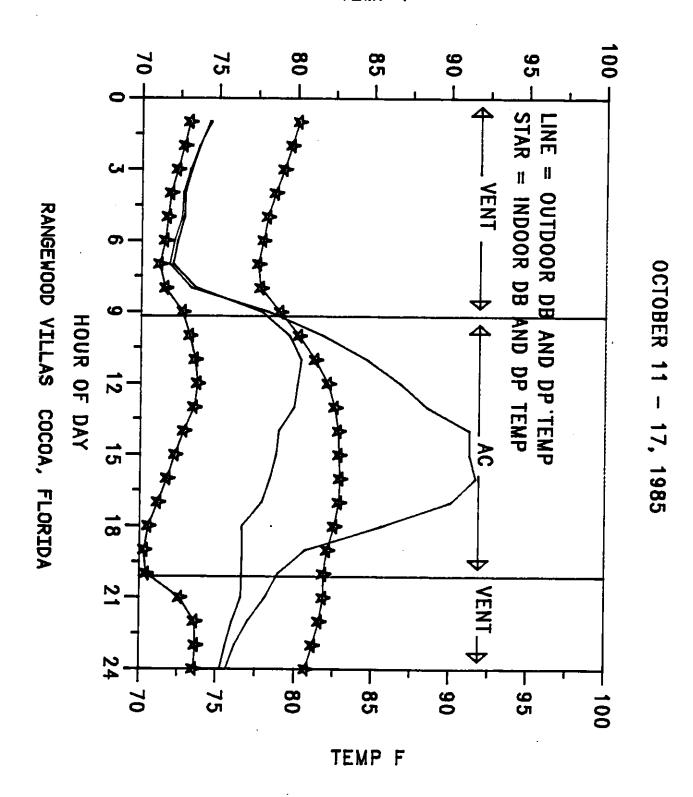
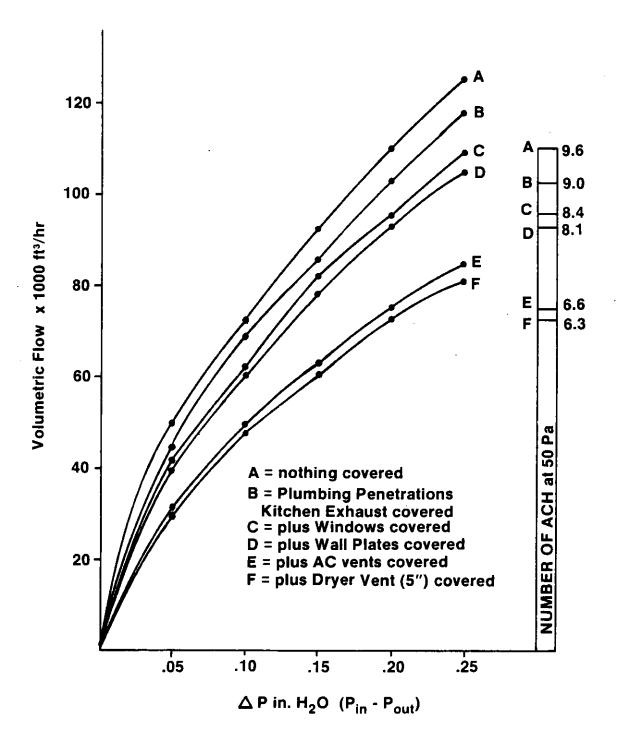
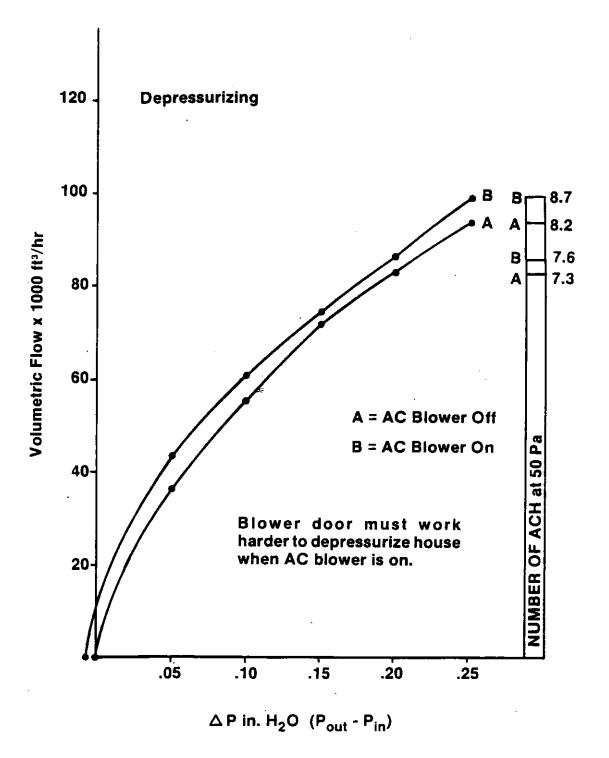

> TAPE FIELD NUMBER

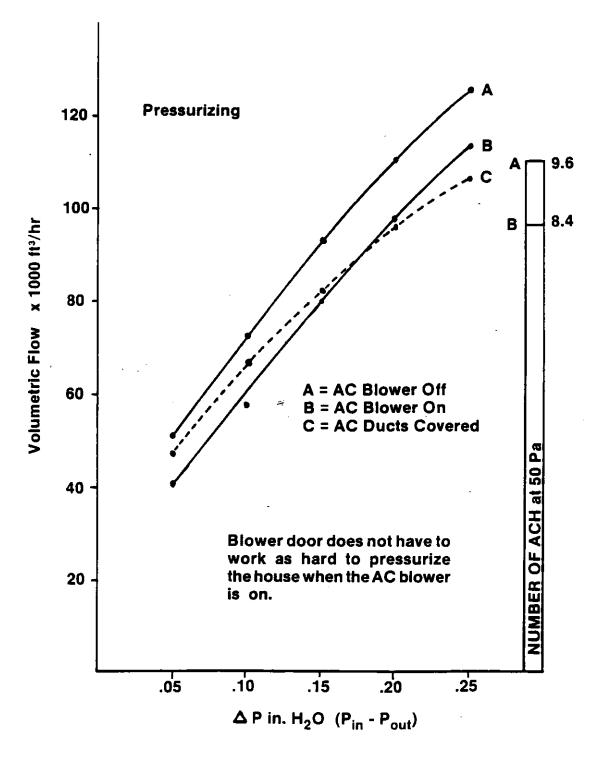
Table 10. Weather Tape Format (Continued).

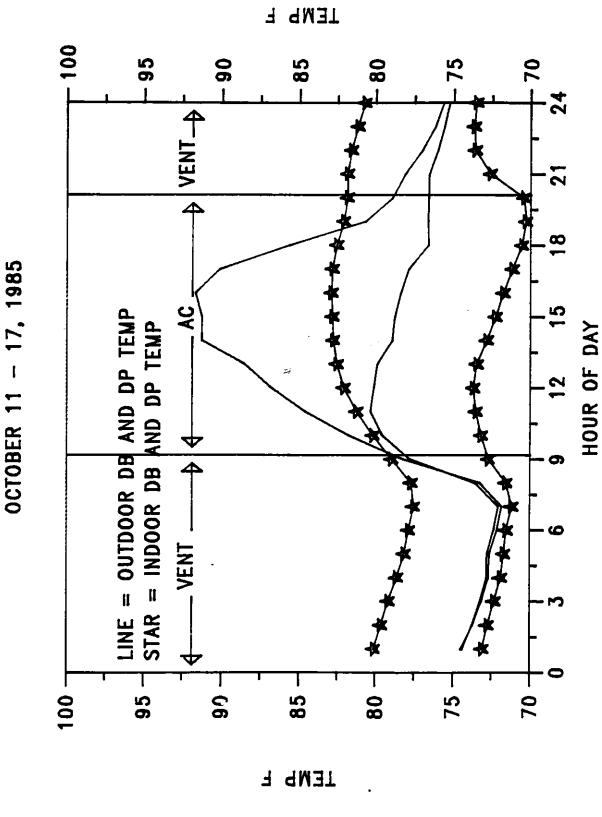
UNIT A

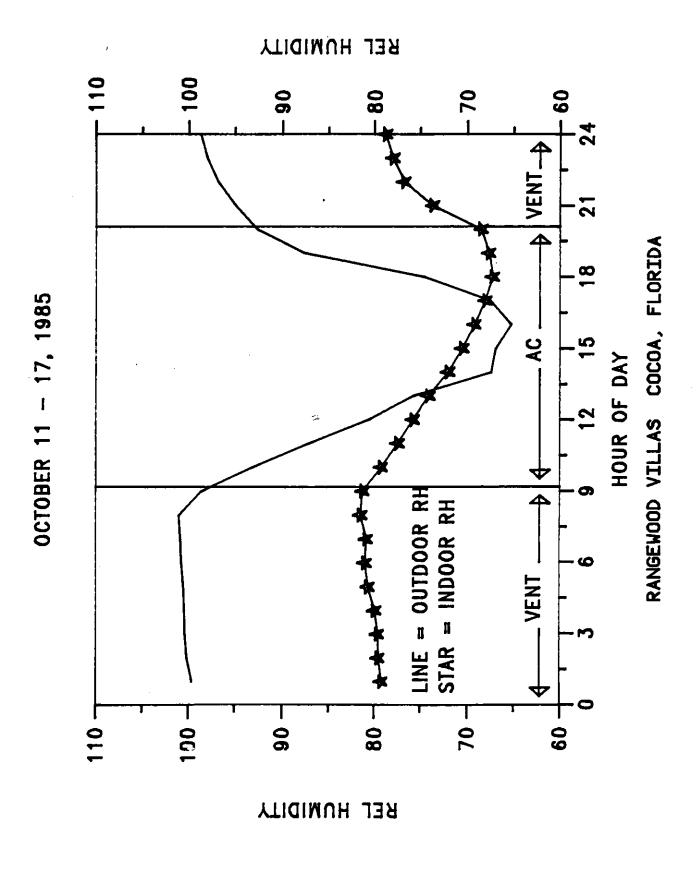
01 502 503 504	407 408 501	407 408		404 405	403	402	401
i i i i	xxxx ixxx	xx lxxx		XXXX I XX	(!xxxx	x i xxxx	I XXXX
BOT ! LR ! BRU ! ATTIC ! BRD ! GYP-!ZONE 1!ZONE 2!ZONE 3 ! ! SUM!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	T LR P-1ZONE 1		I TOP I BOT	I TOP I BOT I TOP I BOT I TOP I BOT I BOT I BOT I	YTH I SHEATH	7	igle ighti
ZONE TEMPERATURES !	i ZC				THERMOCOUPLE TREE	THERMO	;- ;- -
UNIT B	Ur.					UNIT A	UNIT A
301 302 303 304 305	208 301	207	206	204 205	203 2	202	201
i i i i i	XXXXX I	I TIME	I SATE	TIPOINTI DRY I OUT I BULB I I I	1 1	∥ × ·	I BULL
i TATOT i	i dwall i	i FAN			COIL TEMPERATURES	ANG I ANG	 DR -
R USE	POWER USE	I MHD	- I		OMP	AT I	
						 	UNIT A
104 105 106 107 108 109 110 111	T03	702	101	004	2 003	7007	- † 9-
KI XXXXI XXXXI XXXXI XXXXI XXXXI	×				- '		· · ·
		I	-			ξ ·	 :
ic! BRD ! TS ! LR ! BRU !Attic! RH! RH! RH! 3! ! IZone 1!Zone 2!Zone 3!Zone 1!Zone 2!Zone 3!	I ERU I Attic! 1!Zone 2!Zone 3!	I ERU	! LR ! Zone	! Solar Time ! LST !YR!MO!DY!HRW!TIME ! ! ! ! !	WBAN ! SOL		! Tape ! Deck ! #
S ! ZONE DEWPOINTS ! RELATIVE HUMIDITY !	ATURES	ZONE TETPERATURES	i zone		CATTON	IDENTIFICATION	;

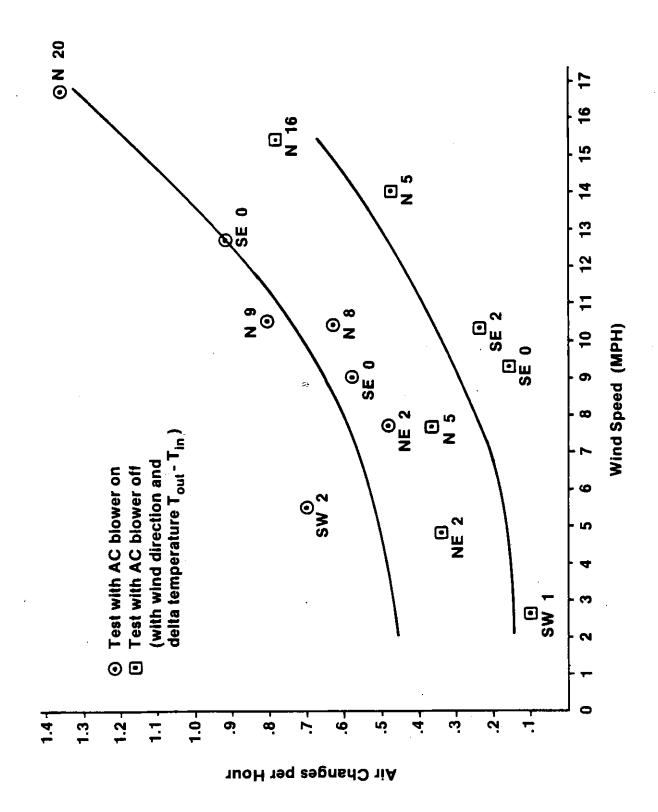


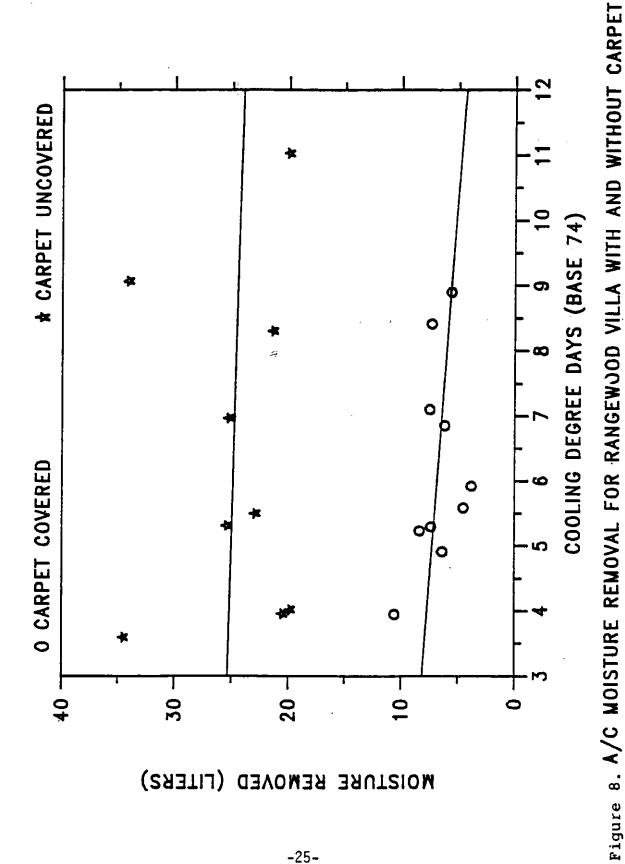



MAN FEEC


Cooling energy use at Rangewood Villas for two setpoints (78 & 81.5°F) for night ventilation and no ventilation during 1985 and 1986




RANGEWOOD VILLAS COCOA, FLORIDA



Rangewood Villas Statistics

			Outdoor	door	Sun	Indoor	oor	Int.
			Dry		(Btu/	Dry		Load
	Dates	Days	Bulb	H.	ft²Day)	Bulb	Æ	(kWh/Day)
<u>.</u>	5/26-7/22/85	28	80.2	87.9	1847	73.4	58.8	7.60
ج ا	8/29-9/20/84	19	7.67	78.7	A A	74.1	9.09	11.20
က်	8/4-8/19/84	16	81.4	78.6	A A	77.9	59.0	10.48
4.	7/24-9/9/85	43	81.9	86.7	1630	77.7	58.5	6.48
5.	5. 9/11-9/28/85	18	79.1	89.0	1433	81.5	57.0	9.84
9	6. 10/2-10/13/85	7	81.4	90.7	1525	81.4	73.3	9.76

-25-

Table 12. BUILDING File Formant

TAPE FIELD NUMBER	TAPE POSITIONS	NUMBER O DECIMAL PLACES	
<u>Unit A</u>			
001 002 003 004 101 102 103 104 105 106 107 108 109 110 111 201 202 203 204 205 206 207 208 301 302 303 304 305 401 402 403 404 405 406 407	001 - 004 005 - 009 010 - 019 020 - 023 024 - 027 028 - 031 032 - 035 036 - 039 040 - 043 044 - 047 048 - 051 052 - 055 056 - 059 060 - 063 064 - 067 068 - 071 072 - 075 076 - 079 080 - 083 084 - 087 088 - 091 092 - 094 095 - 098 099 - 103 104 - 108 109 - 113 114 - 118 119 - 123 124 - 127 128 - 131 132 - 135 136 - 139 140 - 143 144 - 147 148 - 151	(0) (0) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Tape Deck Number WBAN Station Number Solar Time (YR, MO, DY, HR, MN) Local Standard Time Temperature dry-bulb zone 1 living room Temperature dry-bulb zone 2 upstairs Temperature dry-bulb zone 3 attic Temperature dry-bulb downstairs bedroom Temperature dry-bulb thermostat (down) Temperature dewpoint zone 1 living room Temperature dewpoint zone 2 upstairs Temperature dewpoint zone 3 attic Relative Humidity zone 1 Relative Humidity zone 2 Relative Humidity zone 3 Temperature dry-bulb into coil Temperature dry-bulb out of coil Temperature dewpoint into coil Temperature dewpoint out of coil Temperature dewpoint out of soil Temperature dry-bulb return grill Condensate ml Fan run time (minutes) DHW temperature Total energy Wh Heat pump energy Wh DHW energy Wh Zone 1 energy Wh Zone 2 energy Wh Roof shingle temperature Top of sheath temperature Bottom of sheath temperature Bottom of denny board temperature Bottom of glass batt temperature
408	152 - 155	(2)	Bottom of gypsum temperature
<u>Unit B</u>			
502 148 - 1 503 152 - 1	147 156 - 159 151 160 - 163 155 164 - 167 159 168 - 171	(2) (2) (2) (2)	Temperature dry-bulb zone 1 living room Temperature dry-bulb zone 2 upstairs Temperature dry-bulb zone 3 attic . Temperature dry-bulb downstairs bedroom

through the various layers of the south roof. The BUILDING data was generally very accurate and reliable. The dew point probes occasionally drifted high but were generally corrected within a day or two by cleaning and rebalancing the optical feedback system. The dew point temperatures can be checked against the RH probes.

VI. References

- Jones Jr., Robert E., "Effects of Overhang Shading of Windows Having Arbitrary Azimuth," <u>Solar Energy</u>, Vol. 24 (1980), pp. 305-312.
- 2. Klein, S. A. and J. C. Theilacker, "An Algorithm for Calculating Monthly-Average Radiation on Inclined Surfaces," <u>Journal of Solar Energy</u> <u>Engineering</u>, February 1981, Vol. 103, pp. 29-33.
- 3. Kasuda, T., M. Mizuno, and J. W. Bean, "Seasonal Heat Loss Calculation for Slab-On-Grade Floors,"
 U.S. Department of Commerce, National Bureau of Standards, NBSIR 81-2410, March 1982.
- 4. Khattar, Mukesh K., "Residential Air-Conditioning Energy Calculations," Florida Solar Energy Center Professional Paper FSEC-PF-55-84, June, 1984.

Appendix A

Description of materials used to furnish Rangewood Villas townhouse Unit A during Phase III (moderately furnished) and Phase IV (heavily furnished) of the 1986 tests.

Phase III

I.	Livi	ing Room:
	A.	Furniture

Α.	Furr	itur	_
	L ULI		_

sofa	110 lbs	s 12 lbs cushions
love seat	80 lbs	8.5 lbs cushions
coffee table	23 lbs	metal & glass
2 end tables	13 lbs	metal & glass
2 lamps	5 lbs	china & plastic
-		wrapped shade

B. Additional furnishings

8	magazines	,	3	lbs	10	οz	S. end	table
5	magazines '		3	lbs	15	ΟZ	N. end	table
1	weekday newspaper				6	ΟZ	coffee	table

II. Dining Room:

A. Furniture

table	25	lbs	glass & metal
4 cloth seat chairs	4x11	lbs	metal, foam, cloth

III. Downstairs Bedroom:

- A. Furniture
 - 1. metal bed frame

 - wood head board
 box spring (wrapped in plastic) 52 lbs
 - 4. full mattress (wrapped in plastic) 66 lbs

Particle board:

5.	night stand	(white	e plastic v	/eneer)	30	lbs
6.	tall dresser	(_ #	m)	75	lbs
7.	long dresser	' (Ħ	m)	80	lbs
	mirror (wood	frame,	card-board	d back)	15	lbs

B. Additional furnishings:

1. Clothing in tall dresser

		_			
a.	5 shirts	1	1b	4	ΟZ
b.	2 shorts			13	ΟZ
c.	l short			7	ΟZ
d.	2 shirts			11	ΟZ

Clothing in Closet (hanging)

- a. 3 coats total of 15 lbs 0 oz
- b. 3 jackets
- c. 2 shirts
- d. l pair slacks

	3.	Boxes a. 4 b. 1	cartons	5	w/plastic		lbs lbs		
	4.	Bathro a. 2		hanging		1	lb	0 -	οz
	5.	Utilita. 3	y area cartons	5		2	1b	12	οz
IV.	Upstair		om:						
	A. Fur		.a baadb	oo rd			21	50]	he
		massiv		shelves)			۷.	,,,,	בעם
	2	nresse	ed board	neives, d pedesta	al (bed)		8	30]	bs
	3.	2 pre	ssed bo	pard plat	form		2×8		
		sec	tions						
	4.	mattre	ess (ful	L1)		- 4		56]	
	5.	26 mag	jazines	in close	et	14	lbs	8	ΟZ
	6		id of st	airs am in clo	ncet.	2	lbs	13	07
	0.		id of st)5ec	J	100		02
	7.			cet drap	oed	4	1bs	0	οz
			r rail:						
	8.	flanel	sheet	in close	et at	1	lb	5	ΟZ
		hea	d of st	tairs		•			
					ackets		lb lb		
	10.	blanke	t over	mattres	5	3	TD	0	UZ
			urnish:	ings to	Phase III)	•			
I.	Clothes				: <i></i>	=	1 ha	2	0.5
				's cloth	ing		lbs lbs		
	в. 1	overcoa	16			2	TDS	7.4	O Z
II.	Carpet	section	ns (1.5	' x 2.2')				
	A. 8 s	sections	down:	stairs b	ath)		lbs		
				airs bat			lbs		
•	C. 12 b	oound to	gether	section	5	9	lbs	7	ΟZ
ттт	Boxes:								
		rereal b	oxes ()	kitches)		1	lb	7	οz
	B. 4 c	cardboa	d (dow	nstairs	closet)	2	lbs	7	ΟZ
	C. 15 d	cardboar	d (was	her clos	et)		lbs		
	D. 9 c	cardboa	d (upsi	tairs cl nt close	oset)	4	lbs	0	ΟZ
	E. 5 c	cardboa	d (from	nt close	t)	5	lbs	1	ΟZ
T17	Miscell	Laneoue	•						
T A •		5'x5' w		nket		3	lbs	0	οz
	B. 4 t	towels	nanging	(upstai	rs bath)		lbs		
	c. 1 1	large so	ofa cus	hion		3	1bs	0	οz

Appendix B

Dates for 1986 night ventilation test periods are listed below:

Phase	Thermostat 780	Set Point	Dry-out Period ¹

I	6/26 - 7/05	$7/06 - 7/11$ $7/28 - 8/14^2$	7/12 - 7/18
II	7/19 - 7/27	$7/28 - 8/14^2$	8/15 - 8/19 (1 P.M.)
III ·	9/01 - 9/06	9/07 - 9/11	9/12 - 9/18 (11 A.M.)
IV	9/20 - 9/30	10/01 - 10/13	NA

1. AC on day and night to dry out the townhouse.

2.	7/27 - 8/04	no ceiling fans on
	8/05 - 8/09	two ceiling fans on at night
	8/10 - 8/14	two ceiling fans on day & night

Before August 5 no ceiling fans were used. After August 5, two ceiling fans (upstairs bedroom and living room) were turned on during nighttime ventilation to enhance distribution.

Appendix C

Dates for five thermostat set point periods during 1984 and 1985:

Period	Room <u>Temperature</u>	Year	<u>Dates</u>	Number <u>of Days</u>
I	73.5	1985	June 18- July 22	35
II	74.8	1984	August 29- September 20	22
III	77.8	1985	July 26- September 9	39
IV	78.8	1984	August 4- August 19	16
V	81.3	1985	September 11- September 28	18

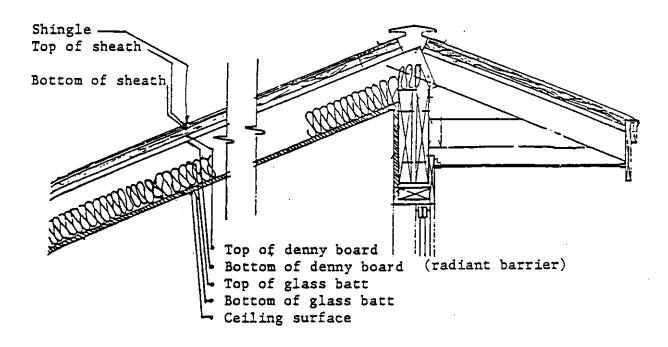


Figure 3. Thermocouple tree in roof.

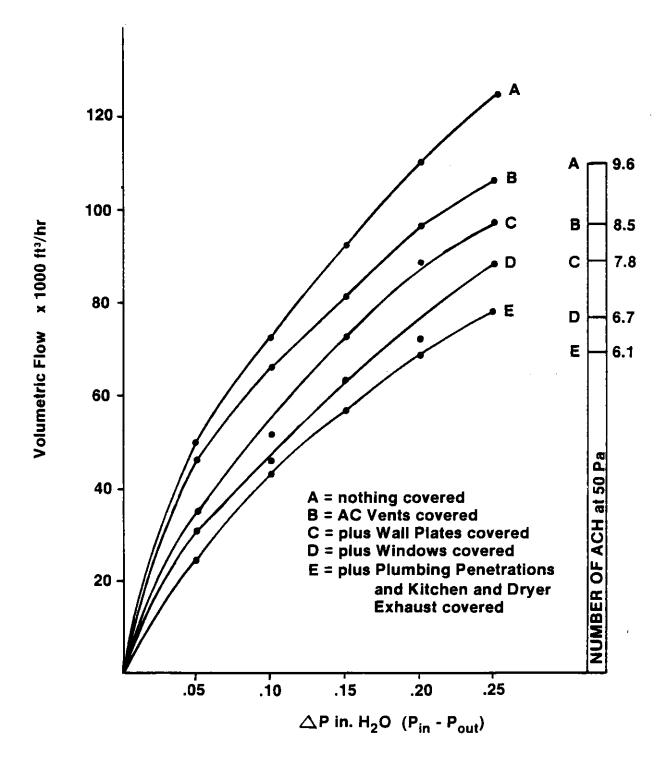


Figure 5. Blower Door Tests at Rangewood Villas (Covering Sources of Infiltration)

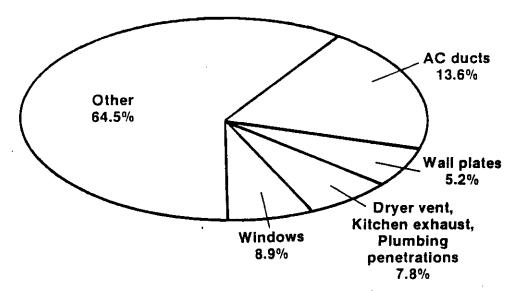
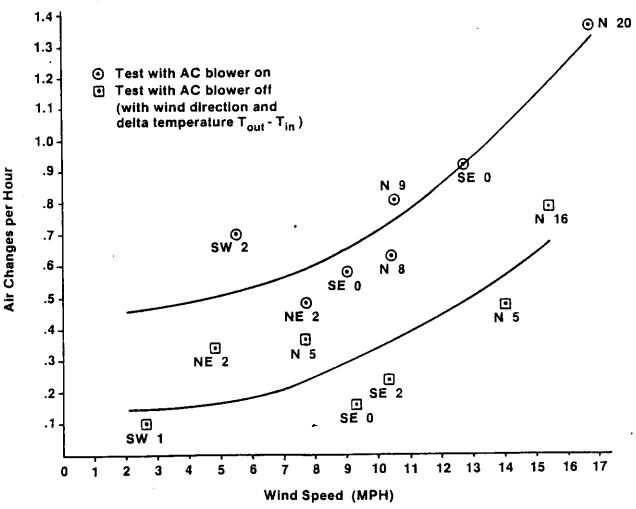


Figure 6. Sources of Infiltration at Rangewood Villas Unit A



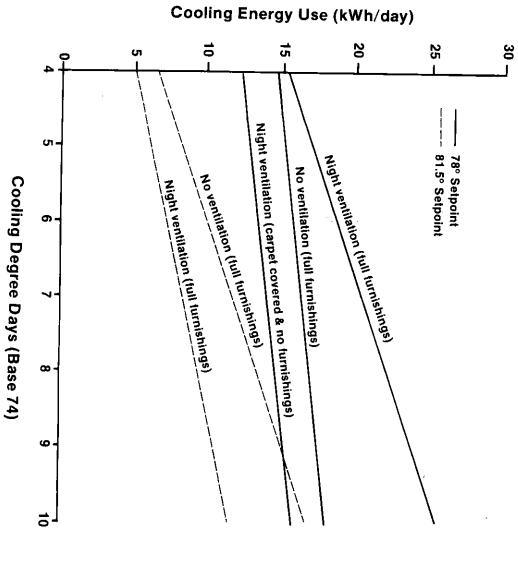

Figure 7. SF₆ Measured Infiltration vs. Wind Speed at Rangewood Villas

Table 1. Ambient Conditions, Energy Use, and Air Conditioner Moisture Removal for Four Furnishing Levels at Rangewod Villas in 1986

Condensate Moisture (1/day)	6.8 25.9 23.8
AC Energy Use (kWh/Day)	14.4 17.9 17.4 16.4
Ambient Dew point (C)	23.5 24.0 22.5
Cooling Degree Days	7.3
Ambient Dry-bulb (C)	26.8 27.4 27.4 27.0
Phase	I II II II N

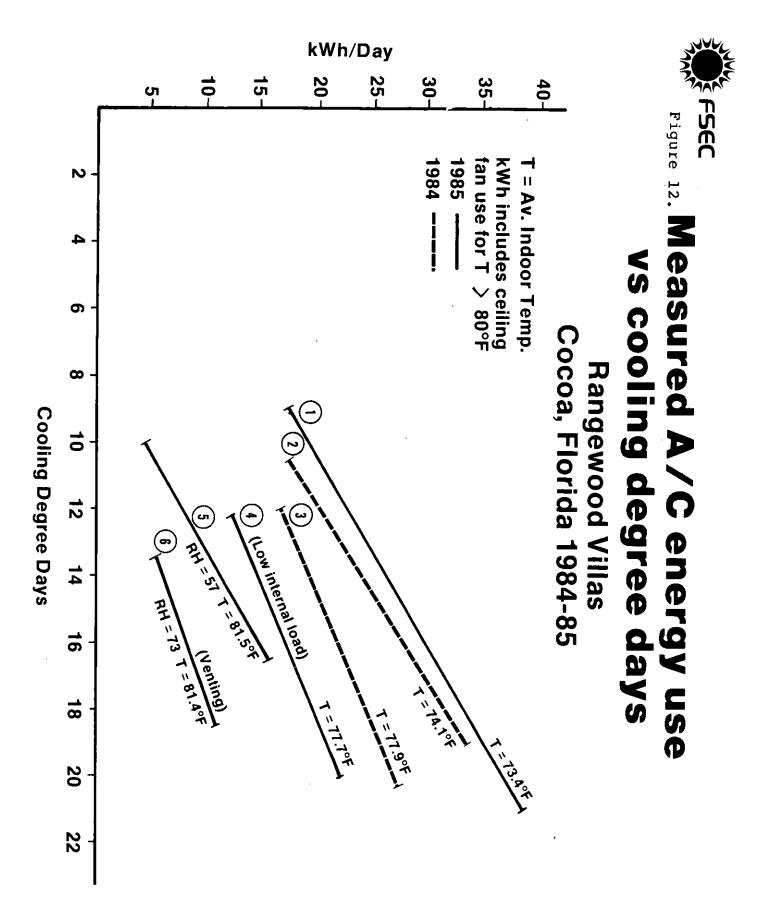


Table 2. Measured and Calculated Sensible Cooling Load at Rangewood Villas for Flue Thermostat Set Points

Percent of Actual	102.2	98.1	112.6	90.7	95.5	7.66
Calculated load kBtu/day	145.8	139.7	103.6	112,3	42.0	108.7
Slab Gain kBtu/day	14:1	(11.3) 8.6	(8.1) 2.8	(3.3) 0.0	(1.1) -13.8	(~116.0) 2.5
Infiltration Sens. Load kBtu/day	12.9	(10.4) 10.5	(9.9) 6.1	(7.2) 6.8	(7.4) 2	7.0
Window Bolar Gain kBtu/day	27.9	(22.4) 30.7	(29.0) 28.6	35.8	(45.0) 25.8	(217.0) 29.8
Common Wall Load kBtu/day	6.3	3.7	 	(1) -1.2	(-1.5) (-2.0)	6. 4 6. 4
Envelope Load kBtu/day						
Internal Load kBtu/day	21.4	33.9	19.4	32.9	30.1	27.5
HP Sens. Load kBtu/day	142.6	142.4	92.0	123.8	44.0	10.601
HP Energy LWR/day						
COP Total	2.400	2,385	2.359	2.363	2.518	2.405
	1.656	1.759	1,615	1.736 2.363	1.620	1.677
Weighted Envelope Temp.	82.9	62.3	84.5	84.3	81.6	63.1
Ambient Temp.	80.2	79.7	81.7	81.4	79.1	BO.4
Room Temp.	73.5	74.8	77.8	78.8	81.3	17.2
Date	6/18-7/22/85	8/29-9/20/84	7/26-9/09/65	8/04-8/19/84	9/11-9/28/85	Average

In parentheses is a percent breakdown of the non-internal load portion of the calculated sensible load.

Rangewood Villas Statistics Table 3.

Int.	Load (kWh/Day)	7.60	11.20	10.48	6.48	9.84	9.76
oor	Æ	58.8	9.09	59.0	58.5	57.0	73.3
Indoor	Dry Bulb	73.4	74.1	77.9	77.7	81.5	81.4
Sun	(Btu/ ft²Day)	1847	A	A A	1630	1433	1525
Outdoor	H	87.9	78.7	78.6	86.7	89.0	90.7
Out	Dry Bulb	80.2	79.7	81.4	81.9	79.1	81.4
	Days	58	19	16	43	18	7
	Dates	1. 5/26-7/22/85	2. 8/29-9/20/84	3. 8/4-8/19/84	. 7/24-9/9/85	. 9/11-9/28/85	6. 10/2-10/13/85
			N	က	4	5.	9

Table 9. Detailed Calculations of Latent Cooling at Rangewood Villas for Five Pariods

74.1 58.1 .0183 .0104 3.8 .524 .300 13.65 6257 75.2 59.4 .0190 .0110 4.4 .494 .311 13.70 6237 75.7 67.5 .0194 .0116 2.8 .343 .233 13.79 4640 75.6 62.8 .0193 .0122 3.8 .425 .274 13.83 5441 74.1 63.5 .0163 .0166 4.6 .465 .165 .156 .193 3796 74.8 61.0 .0169 .0166 3.6 .301 .202 .301 .302 .301 .302 .301 .302	Dete	Hoom ! Ambient ! Am I Temp. Temp. ! Dew		Ambient Temp.			l Room f Dew Paint	o in t	Ambien Humidit	Ambient 	Room Humidity Retin		Wind Speed MPH	Fan Pun Fraction	n 1 n 1 tion 1	Air Chenges/ Kour	 };	Atr Spec, Volume ft ³ /lb	. Pounds Dry Air/Day	8 . 4	Calculated Latent Load kBtu/Dey		Measured Latent Load k8tu/Day
75.7 62.5 .0194 .0116 2.8 .343 .233 13.70 6237 .25.7 .25	/18-7/22/8 /29-9/20/8	5 1 73,5		80.2 79.7		74,1	85		2	8 8	.0104		3.8	35.	34	300	<u> </u>	13,65	1 6257	-	67.8	-	64.1
75,6	726-9/09/B	5 1 77.8	-	81.7	. _	75.7	. 1	· -	Ē	. T	5.50		4 0	4.		11.		13.70	1 6237	-	50.5	-	9.03
74.1 63.5 1.0183 1.0726 1.46 1.465 1.182 1.388 1.3796 1.74.8 1.65 1.0188 1.0188 1.01	04-8/19/8	4 1 78.8	-	81,4	_	75.6	- 82	-	Ē		22.0		0 00	٠, ۵۷	3 ř.	27.0		13.79	1 464L		40.1	-	45,4
74.9 61.0 .0169 .0116 3.9 .3901	/11~9/28/8	4 81,3	-	79.1	-	74.1	1 63	-	٤	8	.0126	-	4.6	9	, ,,	60.	- -	50.00	1 5441		તુ (જે (44.7
V.C.Y		1 77,2	-	80,4	_	74.9	1 61	<u>-</u>	<u>.</u>	- 68	.0116	-	8.8	38		2	- 	13 77	02/20		D 1		24.4