FLORIDA SOLAR

Cooling with Ventilation

ENERGY CENTER®

Authors

Chandra, Subrato Fairey, Philip Houston, Michael

Original Publication

Subrato Chandra, Philip Fairey, Michael Houston, "Cooling with Ventilation", A Product of the Solar Technical Information Program, Published by Solar Energy Research Institute, Operated for the U.S. Department of Energy, December 1986.

Publication Number

FSEC-CR-1658-86

Copyright

Copyright © Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road, Cocoa, Florida 32922, USA (321) 638-1000 All rights reserved.

Disclaimer

The Florida Solar Energy Center/University of Central Florida nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Florida Solar Energy Center/University of Central Florida or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Florida Solar Energy Center/University of Central Florida or any agency thereof.

A Research Institute of the University of Central Florida 1679 Clearlake Road, Cocoa, FL 32922-5703 • Phone: 321-638-1000 • Fax: 321-638-1010 www.fsec.ucf.edu SERI/SP-273-2966 DE86010701 December 1986 UC Category: 59b

Cooling with Ventilation

Prepared by

Subrato Chandra Philip W. Fairey III Michael M. Houston

Florida Solar Energy Center 300 State Road 401 Cape Canaveral, Florida 32920

A Product of the Solar Technical Information Program

Published by

Solar Energy Research Institute

A Division of the Midwest Research Institute

1617 Cole Boulevard Golden, Colorado 80401-3393

Operated for the U.S. Department of Energy

Preface

In keeping with the national energy policy goal of fostering an adequate supply of energy at a reasonable cost, the United States Department of Energy (DOE) supports a variety of programs to promote a balanced and mixed energy resource system. The mission of the DOE Solar Building Research and Development Program is to support this goal by providing for the development of solar technology alternatives for the buildings sector. It is the goal of the Program to establish a proven technology base to allow industry to develop solar products and designs for buildings that are economically competitive and can contribute significantly to building energy supplies nationally. Toward this end, the Program sponsors research activities related to increasing the efficiency, reducing the cost, and improving the long-term durability of passive and active solar systems for building water and space heating, cooling, and daylighting applications. These activities are conducted in four major areas: (1) Advanced Passive Solar Materials Research, (2) Collector Technology Research, (3) Cooling Systems Research, and (4) Systems Analysis and Applications Research.

Advanced Passive Solar Materials Research. This activity area includes work on new aperture materials for controlling solar heat gains and for enhancing the use of daylight for building interior lighting purposes. It also encompasses work on low-cost thermal storage materials that have high thermal storage capacity and can be integrated with conventional building elements, and work on materials and methods to transport thermal energy efficiently between any building exterior surface and the building interior by non-mechanical means.

Collector Technology Research. This activity area encompasses work on advanced low-to-medium temperature (up to 180°F useful operating temperature) flat-plate collectors for water and space heating applications, and medium-to-high temperature (up to 400°F useful operating temperature) evacuated tube/concentrating collectors for space heating and cooling applications. The focus is on design innovations using new materials and fabrication techniques.

Cooling Systems Research. This activity area involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal output and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques.

Systems Analysis and Applications Research. This activity area encompasses experimental testing, analysis, and evaluation of solar heating, cooling, and daylighting systems for residential and nonresidential buildings. This involves system integration studies, the development of design and analysis tools, and the establishment of overall cost, performance, and durability targets for various technology or system options.

This document, Cooling With Ventilation, presents design guidelines and the results of research conducted under systems analysis and applications research. The design guidelines contained in this publication represent the first in a series of technical guidelines and calculation procedures being prepared for solar buildings. In a cooperative effort, the Passive Solar Industries Council, the National Association of Home Builders, Los Alamos National Laboratory, and the Solar Energy Research Institute are developing a simplified calculation process for designing passive solar residences. Initially, this calculation procedure will be available for Raleigh, North Carolina.

Contents

Page Chapter 1. Introduction	
Chapter 2. Recommendations to Builders	
Chapter 3. The Cooling Load: Sources and Reduction Strategies	
Sources	
Window Shading	
Radiant Barriers	
Radiant Barrier Roof Systems	
Radiant Barrier Wall Systems 14 Radiant Barriers and Climate 14	
Barriers and Building Type	i.
Roof Barrier Construction Techniques	
Wall Barrier Construction Techniques 20	ł
Chapter 4. Air-Circulation Fans	i
Introduction	
Human Comfort 23 A New Concept Using Ceiling Fans 24	, L
Chapter 5. Natural Ventilation	,
Introduction	,
Characteristics of the Wind)
Chapter 6. Principles of Airflow In and Around Buildings	
Effects of Grouping Buildings	2
Ventilation Augmentation by Wing Walls	3
Design Strategies Using Wing Walls	3
Trees and Landscaping to Channel the Wind 37 Airflow on Roofs and Whole-House Roof Ventilators 37	7
Innovative Ventilators	3
Chapter 7. Window Design and Airspeed in Naturally Ventilated Rooms	1
Window Location	3
Window Sizing	3
Airspeed in Naturally Ventilated Rooms 4	
Chapter 8. Naturally Ventilated Home Designs 4	7
Room Ventilation Strategies	7
Example House Plans	
Chapter 9. Whole-House Fans	
References	
Bibliography	
Appendix A Window Sizing Methodology 6	
Appendix B Climatic Data for the Southern Gulf and Southeastern Atlantic Coast States	8

Chapter 1 Introduction

This document addresses the design of buildings using solar technologies integrated with air-conditioning to meet cooling needs in climates that seasonally experience both high temperatures and high humidity. Low-energy envelope design strategies that complement air-conditioning are emphasized. The material deals primarily with detached single-family residences, although the principles are applicable to multistory apartment and condominium buildings and to small office and commercial buildings. Home builders and both present and future homeowners should find the contents useful.

Low-energy solutions discussed include natural ventilation, fans, radiant barriers, and window shading. Much is devoted to natural ventilation since this document is an outgrowth of natural-ventilation research funded by the Solar Buildings Technology Program of the U.S. Department of Energy. The data and material, for the most part, are specifically for the Southeast U.S. (North Carolina and southward) because practical low-energy solutions for the heat and humidity of the Southeast are limited to the techniques discussed here, although other approaches are under study. In the Southwest, many other solutions (e.g., evaporative cooling and high-mass buildings coupled with night ventilative or radiative cooling) are possible in addition to those discussed here.

A set of recommendations to homebuilders in hot and humid climates is provided in Chapter 2. Each recommendation is derived from more detailed information in following chapters, and guidance to the chapter that discusses the subject is provided.

Cooling problems are different from heating problems; the sun is a liability rather than a benefit. East and west building sides receive low-angle direct sun and are more difficult to shade than north or south sides. Cooling load sources and strategies to reduce them are discussed in Chapter 3. Considerable material on radiant barriers and overhangs is presented in this chapter. Chapter 4 provides guidelines for selection and use of ceiling fans, the most energy-efficient and cost-effective strategy in the Southeast.

Chapters 5 through 8 are devoted to natural ventilation. Emphasis is on understanding airflow in and around buildings so that building protrusions can be used to take advantage of the wind to improve ventilation. Complete floor plans of some well-ventilated houses are presented, and innovative ventilation schemes that involve roof-level apertures are discussed. The use of a whole-house fan is described in Chapter 9.

Throughout the document, material that should be of particular interest to professional home builders has been highlighted by **boldface** type. The main text is followed by a reference section, a bibliography, and two appendices. Appendix A provides a sizing method for windows to attain a given airflow rate through a house. Appendix B provides average windrelated data for selected cities in the southern Gulf and southeastern Atlantic coast states of the U.S.

Chapter 2 Recommendations to Builders

Strategies for house design in areas of the U.S. that experience both high temperature and high humidity are the subject of this document. Since the results grew out of a study on natural ventilation funded by the Passive Solar Cooling Program of the Department of Energy, natural ventilation techniques are emphasized. Of all passive cooling techniques, natural ventilation holds the most promise in the Southeast. The following design tips are derived from more detailed information provided in the remainder of the report, and the chapter containing that information is given in parentheses.

Cooling Need Reduction Strategies (Chapter 3)

Properly sized roof overhangs reduce summer solar heating on windows and walls. They are effective on all sides of buildings in the Southeast, though they do not reduce peak loads in early morning or late afternoon. In winter, excess overhang on the south side will reduce beneficial heat gains and are not recommended where such gains are useful. Proper overhang width increases the further south a house is located.

Reflective window films provide shading for singlepaned glass on east and west building sides. If winter heating is required, window films should not be used on south-facing glass. Such films applied to the inside of double-paned glass on east and west sides may lead to glass breakage and should be avoided.

Radiant barriers are excellent devices to reduce heat gain, particularly heat gain through an attic. Radiant barrier systems are aluminum foil-faced products that are installed in attics and walls, with an adjacent airspace.

A roof radiant barrier, placed in the airspace between a sun-beated roof and the cooler attic floor, eliminates most radiant heat transfer across the attic airspace. A roof barrier system with R-19 ceiling insulation is more effective than R-30 ceiling insulation as far north as Baltimore. Roof barrier systems should be installed in an attic in a manner to avoid dust accumulation on the reflective surface since dust reduces performance. Cooling needs can be reduced by up to 10%, with payback in less than five years. An exterior wall radiant barrier and accompanying airspace will decrease interior-exterior temperature differences in summer but increase them in winter. But, where heat gain is a problem most of the year, winter liabilities are more than offset by summer benefits. Wall radiant barrier systems are recommended for east and west walls only and for climates with fewer than 2000 heating degree days per year.

For large houses, two separate central air-conditioning systems can be established; one in a zone designed for daytime activities and the other for nighttime use. Afternoon and evening activity zones should be located on the east side of the house.

Air-Circulation Fans (Chapter 4)

For every degree Fahrenheit a house thermostat is raised, air-conditioning costs are reduced by 7-10%. Since an air-circulation fan (ceiling, paddle, or portable) allows a thermostat increase of about 4°F with no decrease in human comfort, it can provide up to 40% savings in cooling costs. Payback in three to five years can be readily acheived.

In rooms with normal 8-ft ceilings, a ceiling fan should be installed with a minimum clearance of 8 to 10 in. between ceiling and fan; less clearance may not provide satisfactory air circulation. In a room with sloped or high ceilings, a ceiling fan should be mounted 7 ft. 6 in. to 8 ft above the floor.

Natural Ventilation (Chapters 5 and 6)

Natural ventilation can reduce air-conditioning needs between 10% and 50%, depending on climate and house type. Savings will be highest for homes with the best thermal integrity.

Natural ventilation should be used to create air changes in a house to remove heat; fans should be used to create airspeed for occupant cooling. In this way, a house can be designed both for ventilation during mild weather and for backup heating and cooling during inclement weather. Strategic location of small windows can provide sufficient airflow to exhaust house heat so that interior temperatures remain comfortable.

In the humid Southeast, ventilation may introduce excessive moisture into a house and cause airconditioners to run longer to extract moisture. When temperatures rise, an air-conditioner, once started, will run longer to extract the moisture. Therefore, savings from ventilation could be reduced. This topic is under intensive research, and experimental and theoretical analyses are currently underway. Definitive answers are not yet available, but the following observations are made.

- 1. If a house is to be maintained at 78°F or less and ceiling fans are not used, then it is probably not a good idea to ventilate at night and air-condition during the day during the extremely humid months of July and August (and September in central and south Florida).
- 2. If ceiling fans are used and occupants would like to ventilate as much as possible during the humid months, then furnishings, drapes, carpets, and wall papers that do not absorb much moisture should be used (e.g., rattan rather than upholstered furniture and low-permeability paints and finishes). This will reduce the potential for humidity absorption and buildup in a house caused by ventilation. When the air-conditioner is turned on, it may not have to run unusually long to extract the moisture.

Windows placed in a building's windward and leeward sides promote cross ventilation. Cross ventilation can also be achieved with windows placed on adjacent walls.

In tract housing, close building placement can have a substantial effect on wind flow patterns. For a typical house, the leeward wake extends roughly four times the ground-to-eave height, or about 36 ft. If building gaps are 36 ft or more in the wind direction, normal ventilation patterns will hold. This will be true for typical 75-ft by 100-ft lots if house rows face the wind or are angled, at most, 45 degrees from it.

Wing walls are exterior devices that augment airflow in corner rooms and in rooms with windows on one wall only. Wing walls are placed at window edges and extend from ground to eaves. Properly placed single-sash casement windows can create a similar effect.

Strategically placed trees on east and west sides of a house can effectively block summer sun and are highly recommended. Shrubbery, trees, and fencing can be placed to catch and redirect the wind in a manner similar to wing walls, but expert design assistance is required to achieve real wind control. Under most circumstances, landscaping is best used for aesthetics and shading and only secondarily for wind control. Areas of strong negative pressure created on the roof by wind flow, especially those near roof ridges, can be used as exhaust areas. Louvers and clerestory windows can be used as high-level vents, though protection against rain entry must be carefully considered. Several innovative roof venting schemes have been devised.

Window Design (Chapter 7)

Since fixed-glass windows do not contribute to natural ventilation, use of awning, projection, or casement windows is recommended. Awning or projection windows are preferred to casement windows for rain protection and minimum building protrusion, but poorly made awning windows do not seal well and have reliability problems with their crank mechanisms.

Jalousie windows are the most versatile type for air control but are not recommended because of poor sealing which allows air infiltration in cold weather and when air conditioning is in use. A seasonal second window covering can be used, but this requires occupant agreement and participation.

To ventilate low-mass houses (frame or insideinsulated concrete block), windows should be positioned as far apart as possible so that air does not short circuit between inlet and outlet. For homes with massive heat-storage walls, an inlet window should be placed close to such walls to provide airflow for best heat transfer. Since wind directions vary considerably, windows should be located to capture wind from two or three prevailing directions rather than from one direction only.

Total window area needed depends on required airflow. For a recommended 30 air changes per hour (ACH), total operable window areas of 10-15% of floor area should suffice, depending on location. This window area is not excessive if 100% operable windows are used. With sliding windows, where 50% of the window is fixed, it is impossible to attain good natural ventilation with moderate window areas.

Naturally Ventilated Home Designs (Chapter 8)

A conventional, single-story house design, rotated to north, south, east, and west orientations, is described in Chapter 8, and effects of various design features on natural ventilation are described. An additional single-story, west-facing design is also described. The intent is not to provide "best" passive solar designs but to show how small homes can be designed and oriented to take advantage of local winds.

Whole-House Fans (Chapter 9)

Where open windows do not provide adequate ventilation because of poor building orientation, dense housing, poorly located vegetation, or concerns for security, a whole-house exhaust fan may be an attractive solution. A whole-house fan pulls air in from all open windows and exhausts it through the ceiling and attic.

Windows need not be fully open for proper ventilation but can be securely blocked open 4-5 in. With insect screening, total open-window area should be three times the whole-house fan opening area. Attic vents must be larger than normal with a free-exhaust area of about twice the whole-house fan area.

Chapter 3 The Cooling Load: Sources and Reduction Strategies

Data are presented on the variation of cooling load with climate for the southeastern and middle Atlantic sections of the United States, and cooling load sources are analyzed in this chapter. This is followed by a discussion of appropriate conservation strategies to reduce these sources. Strategies discussed are window shading and radiant barriers.

Sources

The air-conditioning cooling load in a building results from the rate at which heat enters or is generated. Heat gain can be classified by the manner in which the heat enters (solar radiation through windows, conduction through walls and roofs, body heat from occupants, etc.) and by whether the heat is sensible (temperature) or latent (humidity). The sensible cooling load is defined as the rate at which heat must be removed to maintain air temperature at the thermostat setpoint. The latent cooling load results from moisture removal from the building by the airconditioner. Details on the nature and the determination of the cooling load can be found in Chapter 26 of the Handbook of Fundamentals of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 1985).

To illustrate climatic variations in cooling load, a typical modern, small (1500 ft²) slab-on-grade frame house for various southern and eastern cities (Figure 3.1 and Table 3.1) has been analyzed as the base case. It is typical of those built today in north Florida, Georgia, and similar environs and has a fair amount of window shading and other conservation measures. Cooling load sources were calculated for a house thermostat setting of 78°F and an air-conditioner with a seasonal energy efficiency ratio (SEER) of 8.0. The cooling months were assumed to be those for which the average monthly dry bulb temperature exceeded 73°F. This resulted in the cooling months shown in Table 3.2.

The analysis assumed that all houses were naturally ventilated to the extent that there was no cooling load when the ambient temperature dropped below 73°F. Air-conditioner energy usage (in kilowatthours) under these assumptions is shown in Figure 3.2. The figure shows specific kWh values for each city under the three-digit city code. It also shows kWh contours. At an electricity cost of 8 cents/kWh, cooling costs range from about \$80 per season in the New York/Philadelphia region to about \$500 per season in Miami and the lower Gulf coast of Texas. As expected, cooling costs are a significant problem in the Southeast and the Gulf coast.

To analyze the source of these loads, analyses were performed for the base case house using an hourly computer program (Fairey et al. 1986) Figure 3.3 shows pie charts of cooling load sources for Orlando, Miami, Atlanta, and Houston. As expected, latent loads are high.

Most of the cooling load originates from sources that are difficult to control. Infiltration accounts for between 20% and 30% of the load. The assumed design infiltration rate of 0.75 air changes per hour (ACH) probably cannot be reduced too much (maybe to 0.5) without potentially endangering the occupants' health. Very tight houses with forced-ventilation heat exchangers are unlikely to provide acceptable solutions since most of the load is latent. Moreover, houses in the South are usually built to facilitate interaction with the mostly pleasant outdoors.

Internal gain (heat generated by occupants, lighting, appliances, etc.) accounts for about 30% of the load. Average occupancy and appliance use was modelled. It might be possible to reduce this source by the use of microwave ovens or flourescent lighting, very efficient refrigerators, placing stoves on outside walls, dining out more often, or by other such means. However, such reductions are strictly dependent upon occupant preferences.

Cooling Load Reduction Strategies

Window Shading

After infiltration and internal gain, the next greatest source of cooling load is solar heat gain through windows. House windows used in the base case analysis are double paned, and shades provide for 58% solar shading. An additional reduction in solar gain is provided by the 2-ft overhang. At occupant discretion, further reduction in solar gain can be

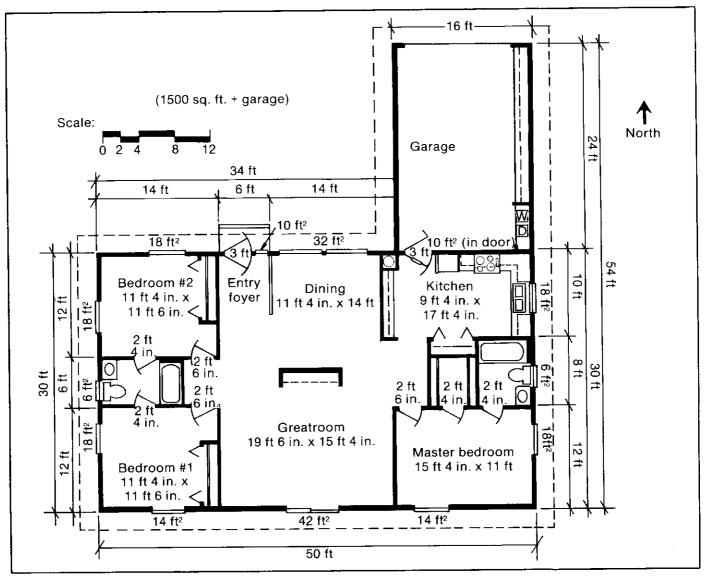


Figure 3.1. Base Case Residence Analyzed for Cooling Load Calculations

Table 3.1 Building Envelope Characteristics

City
New Wash
Ralei
Atlan
Dalla
Hous
Jacks
Orlar
Miam

Table 3.2 Cooling Months for Various Cities

City	Cooling Months
New York, NY	July - August
Washington, DC	July - August
Raleigh, NC	June - August
Atlanta, GA	June - August
Dailas, TX	June - September
Houston, TX	June - September
Jacksonville, FL	May - September
Orlando, FL	May - October
Miami, FL	April - October

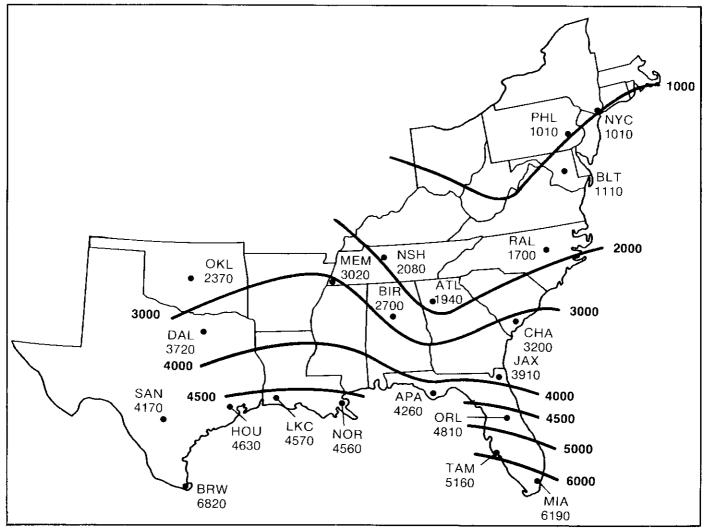


Figure 3.2. Seasonal Air-Conditioning kWh Requirements for the Base Case House in Various Southeastern Cities (A/C SEER = 8.0, Nominal Natural Ventilation)

achieved at low cost by use of reflective drapery linings or venetian blinds. At higher cost, such options as insulated and reflective interior shutters or such exterior devices as awnings, sunscreens, Bahama shutters (awnings without side flaps; see Figure 3.4) and large overhangs are effective.

About 10% of base-case cooling energy requirements can be saved by providing 80% shading instead of the 58% for the base case (Fairey et al. 1986). Such large shading percentages can be provided by the external shading devices in Figure 3.4 or by large overhangs which also provide rain protection for open windows. Overhangs significantly reduce summer heat gain even on the east and west sides of a building. Table 3.3 shows findings on overhang effectiveness for Jacksonville. Overhangs are effective for all directions in the Southeast U.S. because of the large amount of diffuse radiation that is blocked out along with the direct solar radiation. Although effective in saving energy, horizontal overhangs are not very effective in reducing peak loads in the early morning or late afternoon. Peak heat gain values (Q.) in Table 3.3 also illustrate the severity of solar gain through east and west glass compared to north and south glass. Vertical fins, slats, and eggcrate structures can also be designed to provide effective shading and peak-hour heat gain reductions for east and west exposures.

Large overhangs on the south side are not recommended since they will reduce beneficial winter heat gain. Recommended south overhang factors for various north latitudes are presented in Table 3.4. Tables 3.3 and 3.4 were prepared using hourly weather data. Because of afternoon clouds, west facade gains are a little less than east facade gains. However, afternoon solar gain is usually perceived as most intense because of the high mean radiant temperature of the house at that time. Recommended overhang widths on east, west, and north sides are at least as great as those for the south side.

Reflective window films can also reduce solar gain through glass. For locations with some winter heating requirements, window films should not be used on

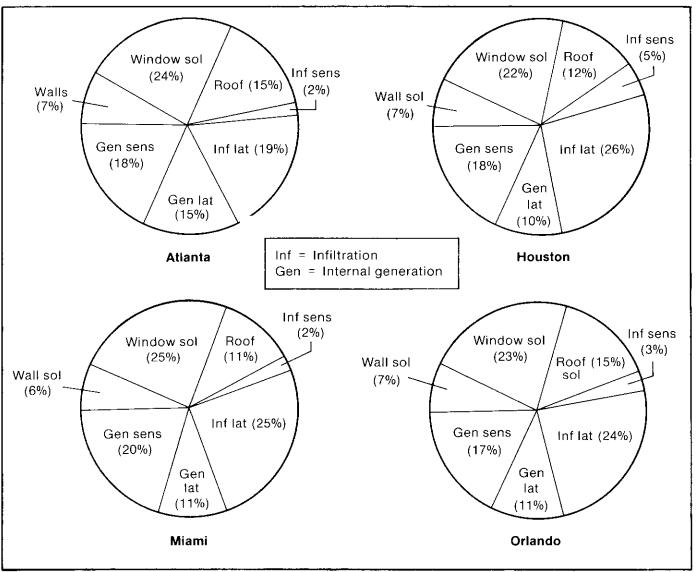
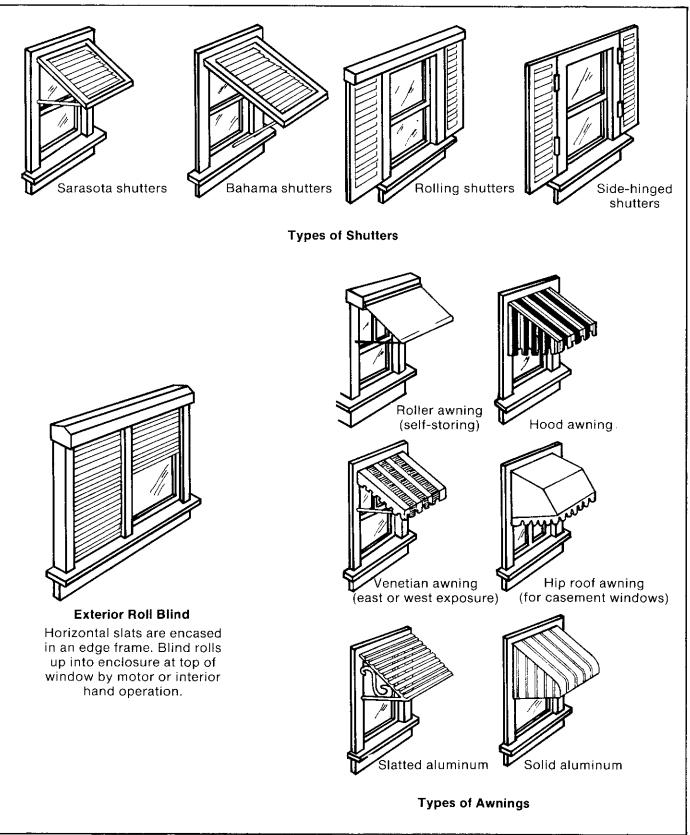


Figure 3.3. Comparison of Air-Conditioner Load Sources in Four Different Climates for Frame Base Case House at T_{stat}=78°F


south-facing glass. Because of small solar loading on north glass, window shading devices may not be cost-effective on the north side. Also note that window films applied to the inside of double-paned glass on east and west sides may cause overheating and glass breakage. For single-paned glass on east and west sides, however, reflective window films can be a viable shading strategy, though exterior shading is usually better. Shade trees on east and west sides are another excellent strategy.

Radiant Barriers

Roofs and walls account for about 20% of the cooling load (Figure 3.3). Adding conventional insulation will do little to reduce this contribution to the load. Therefore, wall and roof insulation levels should be determined from winter heating considerations. An excellent low-cost way to reduce heat gain, particularly through an attic, is by use of radiant barrier systems. Radiant barrier systems are aluminum foilfaced products that are installed in attics and walls, with an adjacent airgap. An attic radiant barrier by itself can save about 10% of the cooling load for the base case house in Orlando. Use of attic and wall radiant barriers combined can save about 15% of the base case load. Attic radiant barriers also create cooler attics; this increases attic utility for summer storage and reduces heat gain into attic-mounted airconditioning ducts. Radiant barrier attics are also effective in keeping usually uninsulated garage spaces cool during the summer.

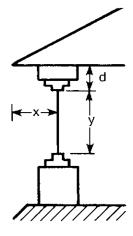
Radiant barriers can be difficult to apply because their principles of operation are not always what one expects. One is accustomed to dealing with radiation in the solar spectrum, much of which is visible. Radiant barriers, however, function in the longwave, far-infrared spectrum which is invisible.

A material's response to far-infrared radiation can be different from its response to sunlight. Since a large

Table 3.3 Peak Cooling Season (June-Aug) Shading Effectiveness of Overhangs in Jacksonville, Lat = 30.5 North (McCluney and Chandra 1984)

	Overhang	Length, ft						
Facade Orientation	Q _g (KBtu/ft ²)	1	2	3	4	6	10	
N	36	0.16	0.33	0.46	0.55	0.67	0.79	
NE	54	0.17	0.35	0.49	0.59	0.73	0.84	
E	67	0.16	0.35	0.50	0.60	0.74	0.86	
SE	57	0.21	0.43	0.58	0.67	0.78	0.80	
S S	39	0.22	0.39	0.50	0.58	0.69	0.80	
SW	55	0.21	0.42	0.57	0.67	0.77	0.86	
w	63	0.16	0.35	0.50	0.60	0.74	0.85	
NW	52	0.17	0.35	0.49	0.59	0.72	0.83	
Horizontal skylight	139							

(Shading effectiveness of 1.0 implies complete shading)


Notes: 1. These calculations assume that the overhang is infinitely wide, that the window height is 4 ft and is located 4 in. below the overhang (see geometry in Table 3.4 figure).

 Q_g = Peak seasonal (June-August) solar heat gain through vertical, single-paned, unshaded windows in kBtu/ft² of glass area. Multiply Q_g by 0.85 to get numbers for clear, double-paned windows. For completeness, the heat gain through horizontal single-paned skylights is also given.

3. (1 - shading effectiveness) x Q_g = solar heat gain through shaded windows.

Table 3.4 Recommended South Overhang Factors for Various North Latitudes

North Latitude	Typical City	Full Shade Required	Overhang Factor, f [f = x/(y + d)]
26	Miami, FL	Feb 21 - Oct 21	0.77
28	Orlando, FL	Mar 6 - Oct 6	0.68
30	Jacksonville, FL	Mar 21 - Sep 21	0.58
32	Savannah, GA	Apr 6 - Sep 6	0.49
34	Atlanta, GA	Apr 21 - Aug 21	0.40
36	Raleigh, NC	Apr 21 - Aug 21	0.45

Notes:

- These recommendations are only for the window and overhang geometries shown. Example: For a 4-ft high window located 4 in. below the overhang line, the required overhang, x, in Orlando = f x (y + d), or 0.68 x (4 ft, 4 in.) = 2 ft, 11 in., or about 3 ft.
- 2. The effect of shading by south overhangs is symmetrical about June 21. This can conflict with the end of the heating season in northern latitudes. Moreover, south overhangs are not as effective for northern latitudes. (The required overhang for Raleigh is greater than Atlanta for the same season). Thus, no recommendations are given for latitudes greater than 36 degrees north.

percentage of sunlight is in the visible range, materials are characterized by color and clarity. For example, it is known that white paint reflects more solar radiation than black paint does. But, in the far-infrared band, white paint absorbs slightly more radiation than black paint does. This surprising fact shows that one cannot judge a material's far-infrared properties by sight. Figure 3.5 compares the solar and far-infrared characteristics of some common opaque building materials.

Transparent materials also respond differently to solar and far-infrared radiation. Common window glass, for example, transmits more than 85% of incident sunlight but absorbs more than 85% of the far-infrared radiation that strikes it.

Radiant Barrier Roof Systems

An attic offers excellent potential for use of radiant barrier systems since the roof is the surface most exposed to solar radiation and since most of the heat transmitted to the attic floor by the roof comes by radiation. The airspace that separates the hot roof surface from the attic floor (and building ceiling) prevents heat movement downward by conduction, and there will be no convection downward from the roof to the ceiling since heated air rises.

A radiant barrier (layer of foil), placed in the airspace between the hot roof deck and the cooler attic floor (insulation), eliminates most radiant heat transfer across the attic airspace. Under peak-day conditions,

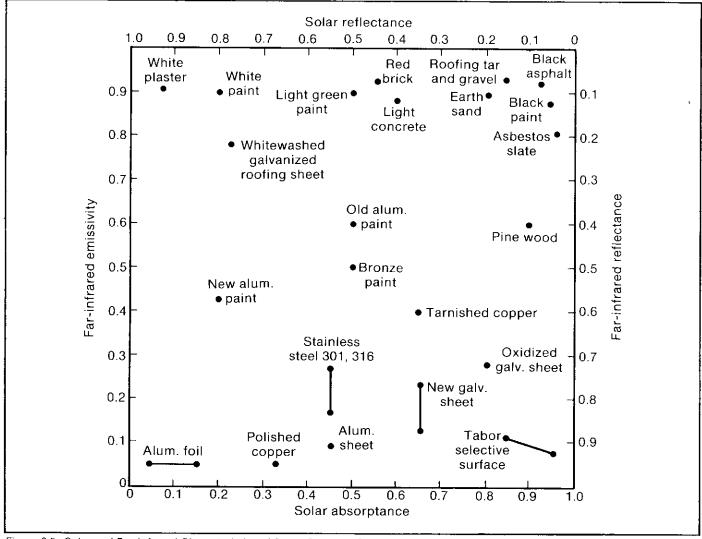


Figure 3.5. Solar and Far-Infrared Characteristics of Some Common Opaque Building Materials

total heat transfer downward through attics can be reduced by more than 40% (Fairey 1982 and Fairey 1986). When roofs enhanced with radiant barriers are compared with standard roof systems in fullscale tests, striking differences in performance are noted (Figure 3.6). For a standard roof, the air temperature a few inches above the ceiling insulation is cooler than both the insulation surface and a point one inch down into the insulation. This illustrates two important phenomena of heat transfer in attics: (1) all downward heat transfer across a standard attic airspace must occur by infrared radiation, and (2) attic air is acting to cool ceiling insulation by upward convection even in unvented attics in summer. When attic heat transfer is upward (winter condition), convective forces augment radiant heat transfer; when heat transfer is downward (summer condition], convective forces work in the direction opposite to the predominant flow of heat.

When a radiant barrier is added to a standard attic, a significant reduction in insulation surface and attic air temperature is noted. The driving force of the heat

transfer through the ceiling (top-of-insulation temperature minus ceiling-surface temperature) is impressively reduced by the radiant barrier (Figure 3.6). Measured ceiling fluxes describe an equivalent 42% reduction in heat flow into the room. It is significant to note that the presence of the radiant barrier results in an insulation top-surface temperature that does not exceed the attic air temperature. This is not true for the standard attic where radiation from the hot roof forces insulation temperature above attic air temperature.

Heat transferred upward through an attic during winter will not be affected as much as during summer because a greater part of total upward heat transfer occurs by convection. Thus, roof radiant barriers are more effective for cooling than for heating and can be of great benefit in a southern climate. In a typical southern home, a roof radiant barrier should reduce the annual cooling load by 10-12%. Reductions in the winter heating load are on the order of 9-14%. The higher cooling season percentage value is for Atlanta and the lower is for Miami, but

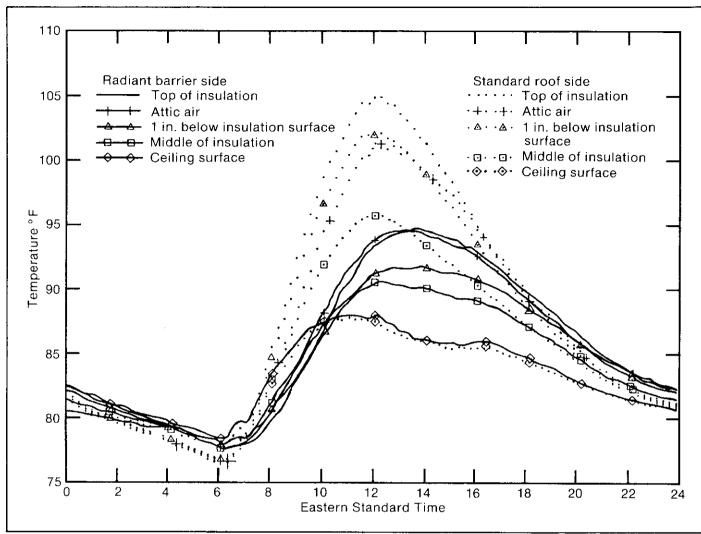


Figure 3.6. Measured Temperatures for Radiant Barrier System Roof vs. Standard Roof (Both Ceilings With 6 in. Fiberglass Insulation)

since the cooling load increases as one moves south, total savings are largest in Miami. For heating, the higher percentage saving applies to Miami, where the heating load is very small, and the smaller percentage saving is for Atlanta.

Radiant Barrier Wall Systems

Overall radiant barrier system performance in a wall is less dependent on heat flow direction than it is in a roof. There are seasonal performance variations of radiant barrier wall systems. In both winter and summer, an exterior radiant barrier airspace will drastically reduce the "sol-air effect," which is caused by solar radiation that strikes the exterior surface of the building and thus raises the surface temperature above that of the ambient air. This effect increases heat gain into the building in summer but reduces heat loss in winter.

An external airspace and radiant barrier together will decrease the effective temperature difference in

summer but increase it in winter. But in the deep south, where heat gain is a problem most of the year, winter liabilities are more than offset by summer benefits.

Radiant Barriers and Climate

Since sol-air effects vary with time of day, season, orientation, and ambient conditions, many radiant barrier systems are climate-dependent. Exterior radiant barrier systems are most beneficial on roofs and east and west walls in summer. Their greatest winter liability occurs on south walls.

Computer studies and full-scale measurements show roof radiant barrier systems to be beneficial in both winter and summer. Analysis shows that R-19 ceiling insulation, plus a radiant barrier system, outperforms R-30 ceiling insulation as far north as Baltimore. Radiant barrier systems increase net daily ceiling heat loss in winter, but when night heating loads are high, radiant barriers significantly reduce heat loss. Because of this match between building load and beneficial performance, radiant barrier systems produce a reduction in building load even though there is an increase in net daily ceiling heat loss. Figure 3.7 gives the relationship between ceiling heat loss and building load for the month of February in Jacksonville. Figure 3.8 shows measured conditions in full-scale, side-by-side tests of R-19 versus R-19 with a radiant barrier. Since the predominant building load is at night, the beneficial performance of radiant barriers at night overcomes their poorer daytime performance. There is good evidence that the model* is predicting reality since results compare well to measured performance (see Chandra et al. 1984).

Table 3.5 compares energy savings attained by adding R-11 ceiling insulation or by adding a radiant barrier to an R-19 base case ceiling. The radiant barrier produces winter savings in all climates and

outperforms the R-30 ceiling, on an annual basis, in all climates analyzed except Chicago. An air-conditioner with a rated SEER of 8.0 was used in the analyses, and heating coefficient of performance (COP) was varied by climate type to reflect heating systems typical of that climate. Simple paybacks and return on investment, given in the table, are calculated based on a power charge of 8.5 cents/kWh and an installed incremental cost of 20 cents/ft² for both the additional R-11 blown insulation and the radiant barrier. The installed cost of the radiant barrier system (\$320) is slightly higher than that for the R-30 ceiling insulation (\$300) because the radiant barrier is assumed to be installed at the roof plane (1600 ft²) as opposed to the ceiling plane (1500 ft^2) where the insulation is installed.

Seven different wall systems have been tested at full scale. Five contained radiant barrier systems and two did not. Exterior radiant barrier systems show

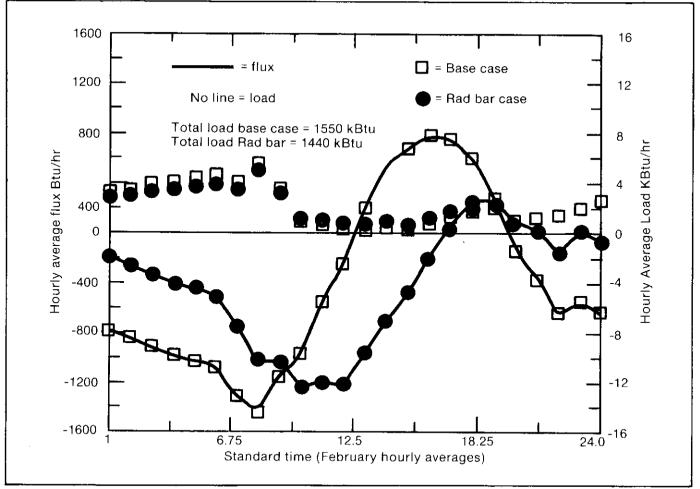


Figure 3.7 Whole-House Hourly Average Ceiling Flux and Heating Loads for Jacksonville in February (Typical Cooling Year Data)

^{*}An in-house Florida Solar Energy Center model called MADTARP: an enhanced version of the NBS-developed TARP program. See Fairey et al. 1986 for further information.

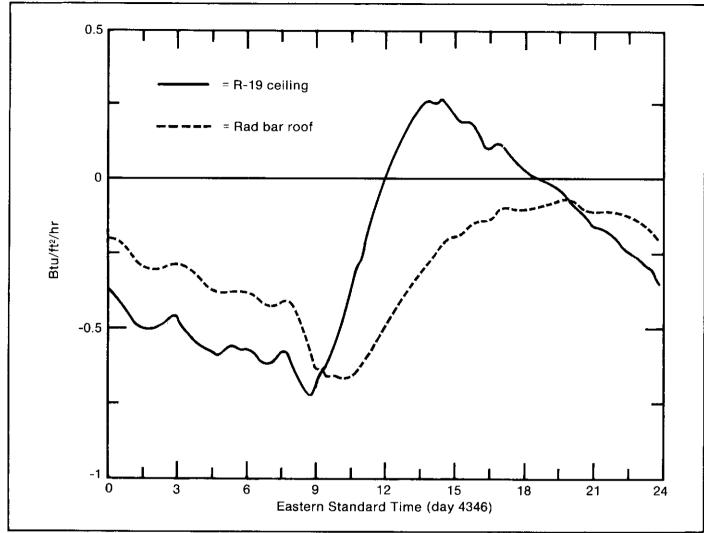


Figure 3.8 Passive Cooling Laboratory Attic Test Cells - Ceiling Heat Flux Over Time for Winter Day

Table 3.5 Comparison of Savings in Seasonal Cooling and Heating Costs From Addition of Radiant
Barrier Roof Zones and Additional R-11 Insulation to a Standard R-19 Attic System

City	Cooling		kWh Savings Heating		Anı	nual	Annual Cost Savings @ \$.085/kWh		Simple Paypack in years		Paypack		Return on Invst. 15 yr. Life 5% Fuel Infl. Rate	
	R-11	RB	R-11	RB	R-11	RB	R-11	RB	R-11 @300.00	RB @320.00	R-11	RB		
Miami, FL (heat COP=1)	272.4	537.7	29.3	38.1	301.7	575.8	\$25.64	\$48.94	11.7	6.5	8%	17%		
Orlando, FL (heat COP=1)	243.7	491.0	128.9	137.7	372.6	628.7	\$31.67	\$53.44	9.5	6.0	11%	19%		
Jacksonville, FL (heat COP=2)	217.1	426.9	99.6	99.6	316.7	526.5	\$26.92	\$44.75	11.1	7.2	8%	16%		
Houston, TX (heat COP=2)	202.1	389.1	121.6	95.2	323.7	484.3	\$27.51	\$41.17	10.9	7.8	9%	14%		
Atlanta, GA (heat COP≃2)	155.3	341.8	224.2	162.6	379.5	504.4	\$32.25	\$42.87	9.3	7.4	11%	15%		
Baltimore, MD (heat COP=2)	124.8	282.8	372.1	249.1	496.9	531.9	\$42.24	\$45.21	7.1	7.1	16%	16%		
Chicago, IL (heat COP=2)	94.1	211.2	474.7	278.4	568.8	489.6	\$48.34	\$41.61	6.2	7.7	18%	14%		

significant seasonal and wall-type performance variations, but interior radiant barrier systems show neither. Interior systems maintained an apparent thermal resistance between R-5 and R-6 at both seasonal extremes in all wall types. As a consequence, they appear to be an effective thermal resistance strategy for a wide range of climate conditions. (This strategy should be avoided if massive wall systems are coupled to a building's interior for thermal storage benefits.)

For climates with severe cooling needs and limited heating requirements, exterior radiant barrier systems can perform better than interior systems; this is especially true for peak-load performance. However, because of their seasonal performance variations, climatic considerations must be emphasized for exterior systems. With these criteria, general climate guidelines for the use of radiant barriers have been developed (Figure 3.9). Attic or roof radiant barrier systems are likely to be effective where there are 3000 or fewer annual heating degree days and 2000 or

more annual cooling degree days (both measured at a base temperature of 65°F). Note that these climate considerations are conservative in comparison to the data presented in Table 3.5.

Requirements are more stringent for radiant barrier wall systems. Winter penalties are high for south walls with exterior radiant barriers; shading is a better alternative. North walls usually are unlikely candidates because they get little direct sun. But for unshaded east and west walls, radiant barrier construction is an effective option in climates with 2000 or fewer heating degree days and 2500 or more cooling degree days.

Venting of east and west walls is suggested only where there are small winter loads (700 or fewer heating degree days) and severe summer problems (3500 or more cooling degree days). In climates where there are 200 or fewer heating degree days and 3500 or more cooling degree days, vented radiant barriers could be justified for all exterior walls.

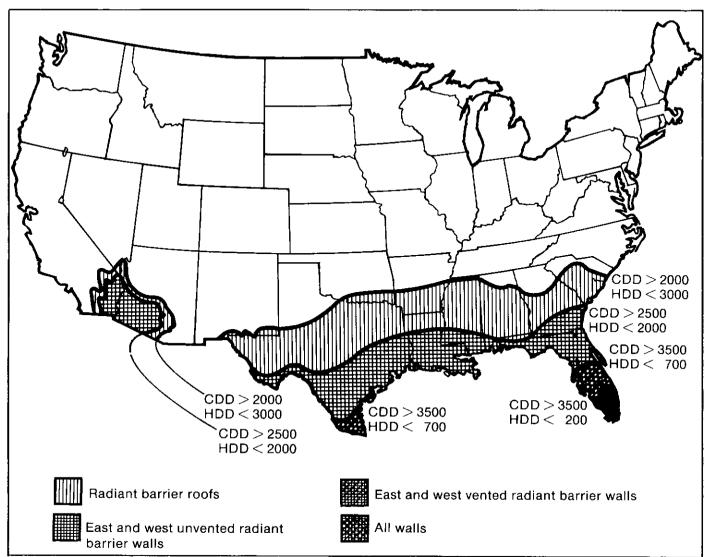


Figure 3.9. Climatic Region Recommendations for Use of Radiant Barriers

Barriers and Building Type

Exterior radiant barriers apply best to skin-loaddominated buildings, such as homes, rather than to internal-load-dominated structures such as office buildings. Multistory commercial buildings are not good candidates since they do not have dominating roof loads. Even multistory residences located in borderline climates may not warrant radiant barrier protection.

Certain large buildings, however, can benefit from radiant barrier construction. For example, some open-bay manufacturing buildings will benefit from interior radiant barriers if radiant transfer between the occupants and the building's skin dominates comfort conditions. In the same way, radiant barriers can be used in agricultural buildings that shelter livestock (most living things are excellent sinks for radiant heat).

Radiant barriers can reduce energy consumption and/or improve comfort in many buildings. The radiant barrier strategy and construction technique, however, will have to respond to individual building needs.

Roof Barrier Construction Techniques

Most roof types already contain an attic or airspace that can accommodate an effective radiant barrier system. In new construction it should be easy to install radiant barrier systems regardless of roof pitch. Figure 3.10 shows three possible generic locations for radiant barriers in attics. When first in-

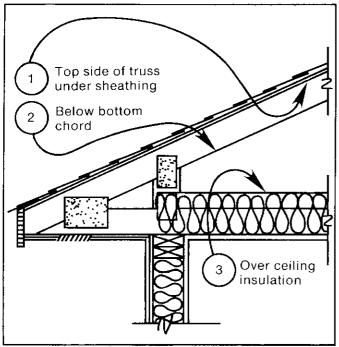


Figure 3.10. Typical Attic Section with Three Possible Locations for a Radiant Barrier

stalled, there will be no significant difference in the effectiveness of these locations. In time, location No. 3 will suffer because of dust accumulation which decreases performance. Dust can't collect on the underside of the radiant barriers at locations No. 1 or No. 2.

Location No. 2 is slightly better for two reasons. First, it can have two radiant barrier surfaces (top and bottom). Second — and more important — it offers the potential for ventilating the space between the radiant barrier and hot roof deck, thus keeping the roof cooler. This results in an attic air temperature somewhat closer to the conditioned space temperature in both winter and summer. As with location No. 3, dust could collect on the top of a radiant barrier at location No. 2, but a radiant barrier surface facing downward will perform as well as one facing upward. Therefore, for reasons of dust accumulation, use location No. 1 or No. 2 and depend on the down side for radiation control.

In new construction, an alternative might offer the advantages of location No. 2 and the construction ease of location No. 1. This places the radiant barrier on top of the roof rafters (or trusses) before roof decking is applied. It is installed so that it droops 2 to 3 in. below the upper surface of the roof structure. When roof decking is applied, an airspace separates it from the radiant barrier as in location No. 2. Also, this airspace can be vented. As with location No. 2, the most reflective radiant barrier surface should face downward toward the attic airspace.

It is important to remember that an airspace must exist next to the aluminum surface. Thus, in location No. 1 the aluminum must face down to be effective. The aluminum foil, for example, cannot be sandwiched between the roof decking and the roofing felt since there will be no airspace next to the foil. Economics are against use of more than one sheet of radiant barrier product in an attic. If double-sided barrier material (aluminum foil, with airspaces, on both sides) is available and costs not much more than single-sided, it may be used. Testing of double-sided versus single-sided barrier products shows no difference in performance at location No. 2 (Fairey 1986).

It is not necessary to form airtight seals with radiant barriers; radiant energy travels in a straight line THROUGH the air but not IN the air. In fact, if location No. 3 (Figure 3.9) is chosen, one should use a perforated foil product that will allow the free passage of vapor out of the insulation during winter. This may also apply to location No. 1 in some cases because the barrier is in contact with the roof decking. Location No. 2 should not have moisture condensation problems since it has an airspace on both sides of the radiant barrier.

Roofs with structures exposed to the living space, such as exposed-beam cathedral ceilings, usually

require special treatment. One alternative (Figure 3.11a) is a "vent-skin" roof construction — two distinct sheathing layers bound an airspace that is vented with ambient air. The second alternative (Figure 3.11b) should not be vented. An approach similar to the first alternative may be used when retrofitting a roof with low pitch and limited attic

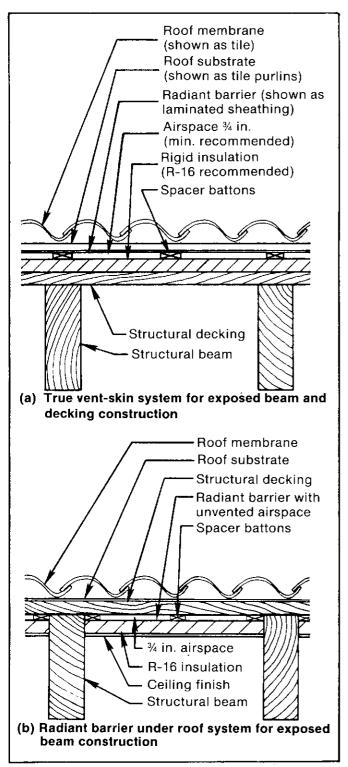


Figure 3.11. Constructions for Exposed-Beam Cathedral Ceilings

access space. A true vent-skin roof, akin to the first alternative, may also be used in conventional construction, but this is not considered as cost-effective as a simple attic radiant barrier system because of additional material requirements and limited additional performance benefits.

Roofs of commercial buildings are different from residential roofs. They are usually flat built-up roofs constructed of steel rather than wood. Commercial buildings often have suspended ceilings above which are mechanical ductwork, electrical wiring, and lighting systems. In many such buildings, roof and ceiling sections are poorly insulated and may have high infiltration rates.

An alternative to common commercial roofing practice takes advantage of radiant barrier protection and places the ceiling plenum inside the conditioned space (Figure 3.12). If the ceiling plenum is still used for mechanical system ductwork, then duct losses will be greatly reduced. In addition, by incorporating the continuous vapor barrier below the bar joists, the ceiling plenum can serve as an effective common return system, simplifying mechanical system design problems. The space above the rigid insulation can be ventilated for thermal and moisture control. This radiant barrier roof system can provide considerable energy savings in single-story commercial buildings where space conditioning is required.

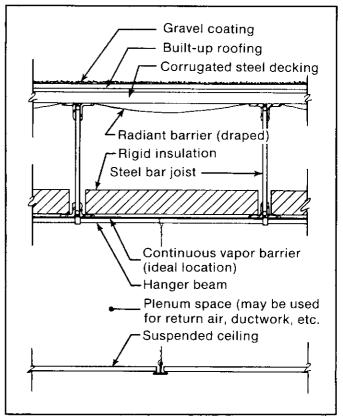


Figure 3.12. Detail of Ideal Radiant Barrier Construction for Typical Flat-Roof Commercial Building

Wall Barrier Construction Techniques

As noted, a radiant barrier must face an airspace to work. Since a wall, unlike a roof, does not usually have an airspace, one must be created. For a retrofit, this probably is done more easily on the outside than on the inside of the wall for either wood-frame or block construction. Interior systems are particularly applicable to frame-wall construction in northern environments where they can provide both thermal protection and a superior interior vapor barrier.

Massive walls used as thermal storage for passive systems obviously should not use internal radiant barrier systems. For energy conservation, however, where there is either no effective passive contribution or where thermal storage is provided by an alternative means, interior radiant barrier systems can provide the most cost-effective conservation alternative for concrete-block wall systems. An interior radiant barrier system for block-wall construction uses standard building materials and standard construction practice to arrive at a superior thermal system (Figure 3.13). The airspace may be used as a chaseway for electrical wiring without significant performance degradation.

Exterior radiant barrier systems are more climatedependent than interior systems. For severe summer climates, however, they offer superior performance. Figure 3.14 shows the necessary parts of an effective system. Only one airspace and radiant barrier are shown. This is all that is needed if other wall insulation is present. If not, multiple-layer products can be used. These provide increased resistance to heat flow in the same manner as multiple-glazed windows do.

Unlike interior systems, an exterior radiant barrier airspace can be vented or unvented. In summer, venting will improve cooling performance; the air-

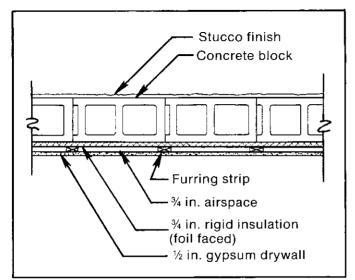


Figure 3.13. Plan View of Interior Radiant Barrier System as Applied to Concrete-Block Construction

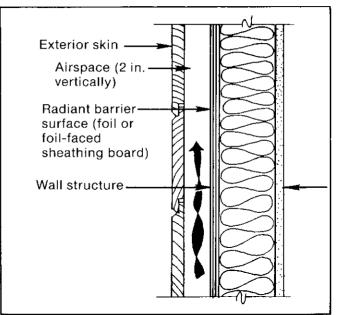


Figure 3.14. Partial Studwall Section With Required Components of an Effective Radiant Barrier System

space temperature will remain low. Figure 3.15 shows a system for venting an exterior radiant barrier airspace with ambient air. Because it is a vent skin, this wall system provides convective cooling of the airspace. Ideally, when the airspace is warmed

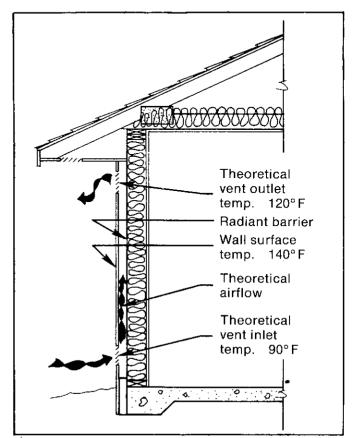


Figure 3.15. Vent-Skin Wall Section (Wind Pressure Affects Air-Flow More Than Stack Effect)

by the hot exterior skin, the air rises in the cavity and exhausts through the outlet. This draws in cooler outside air through the bottom vent.

In practice, wind effects will quickly overcome any buoyancy pressure and will easily offset the thermal "stack" effect in this wall system. In addition, there is a potential for water damage caused by rain intrusion at the upper vent. To avoid these problems, the inlet and outlet vents should be located in different wind regimes. Figure 3.16 shows how this is done by directing the air at the top of the wall into the attic and out through a ridge vent. The outlet (roof ridge vent) is now in a lower pressure zone than is the inlet (bottom wall vent), and, regardless of wind direction and fluctuations, the air in the wall and roof will always move upward. The stronger wind-driven force now works in parallel with the natural thermal stack force, so the warmest air in the vent skin will be continuously removed at the roof ridge vent. This will flush the vent-skin airspace with the ambient air that enters at the bottom wall vent. Figure 3.17 suggests a method of providing a bottom wall vent.

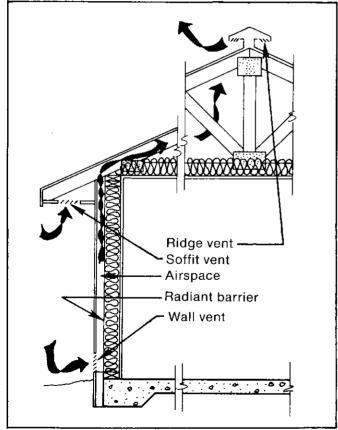


Figure 3.16. Improved Vent-Skin Wall (Wind and Stack Effect Work Together)

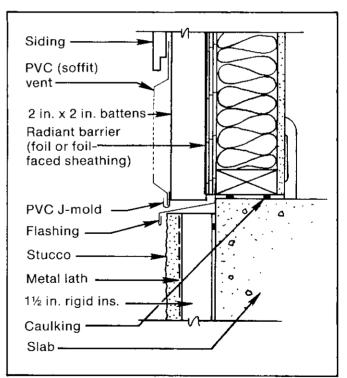


Figure 3.17. Detail of Bottom Inlet Vent-Skin Stud Wall With Radiant Barrier

Chapter 4 Air-Circulation Fans

Introduction

One easy way to reduce cooling costs is to increase the thermostat setting. Calculations indicate that for every degree Fahrenheit the thermostat is raised, airconditioning costs are reduced from 7% to 10%. In the hot climates of Florida and the Gulf Coast, the savings approach 7%; in the moderate climates of North Carolina and Washington D.C., the savings approach the 10% figure. Air-circulation fans (ceiling, paddle, or portable fans) allow a thermostat increase of about 4°F (thus, saving between 28% and 40% of the cooling costs, depending on the climate) with no decrease in human comfort (see Figure 4.1). Increased airspeed created by a circulation fan increases body cooling. Thus, in the presence of a fan that creates a 150-200 ft/min airspeed, a person would be as comfor table at 82°F as he or she would be at 78°F without air circulation (see discussion below). Most homes in the Southeast, even when air-conditioned, have high humidity levels [greater than 60% relative humidity (RH)]. In such situations, air motion produced by a fan creates a distinct sense of comfort. Recommended ceiling fan sizes for various room sizes are shown in Table 4.1.

In rooms with normal 8-ft-high ceilings, a ceiling fan should be installed with a minimum clearance of 10 in. between ceiling and fan. Less clearance may not provide satisfactory air circulation. In a room with sloped or high ceilings, a ceiling fan should be mounted 7 ft. 6 in. to 8 ft above the floor. (An article in the October 1984 issue of *Popular Science* provides tips on mounting ceiling fans in difficult places.) Where ceiling fans may not be practical (e.g., kitchens) portable fans can be used. An oscillating portable fan should be chosen over a fixed portable type since the former will consume about one third as much electricity as the latter for the same comfort level (see

Table 4.1	Ceiling	Fan	Sizina	Chart
-----------	---------	-----	--------	-------

Largest dimension of room	Minimum fan diameter, in.	
12 ft or less	36	
12-16 ft	48	
16-17.5 ft	52	
17.5-18.5 ft	56	
18.5 ft or more	2 fans	

Table 4.2). Wall-mounted oscillating fans can be installed where counter space is at a premium.

A fan with low power consumption and easy controls provides the greatest potential savings. Table 4.2 shows that the power consumption of a good fan is negligible.

Table 4.2 Power Consumption of Fans (Watts)

Fan Speed Setting			
High	Medium	Low	
75	40	15	
42	34	27	
160	104	74	
	High 75 42	High Medium 75 40 42 34	

Human Comfort

The effect of air motion on summertime human comfort has been studied by many investigators (see, for example, ASHRAE 55-1981; Fanger 1970, pp. 36-42; Gagge and Nevins 1977). Later investigators have generally validated the early work by Fanger, although tests at relative humidity levels of 60% to 80% have not been conducted. Figure 4.1, based on Fanger's comfort equations, shows optimum summer comfort lines for various airspeed levels for rooms where mean radiant temperature equals dry-bulb temperature. Occupants are clothed in summertime clothing (trousers, open-neck short sleeve shirt, socks, shoes) and are performing light office-type work. Optimum comfort lines are dashed for relative humidity less than 20% (where health problems may arise) and for relative humidity greater than 80% (where mold and mildew could occur). The still-air (20 ft/min) line shows that, at 60% relative humidity, optimum comfort will be attained at 76°F. Optimum comfort implies a Fanger predicted mean vote (PMV) of 0; i.e., 95% of the population will be comfortable. The comfort zone for PMV = 0.5 and still air is indicated by the shaded zone; i.e., 90% of the population will be comfortable if space conditions are maintained within that zone. The PMV = 0.5 comfort zone boundaries for airspeeds between 150 and 300 ft/min can be obtained by connecting the dotted and square symbols, respectively.

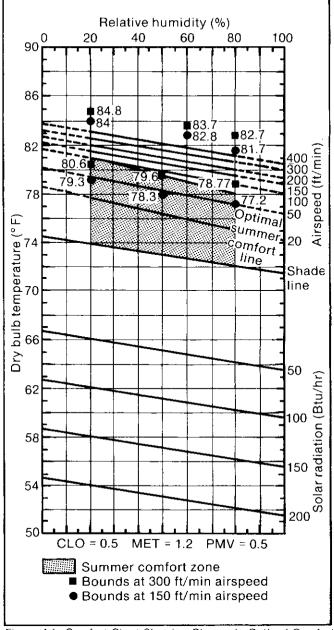


Figure 4.1. Comfort Chart Showing Change in Optimal Comfort Line for Various Air Speeds

The ASHRAE recommended upper limit of airspeed is 160 ft/min. Above that, loose papers may be disturbed. As can be seen from Figure 4.1, such airspeeds permit one to maintain a space 4°F hotter (80°F at 60% RH) and still maintain optimum comfort. The 4°F increase in allowable space temperature when using fans is also allowed by the ASHRAE comfort standard. Figure 4.2 shows airspeeds obtained under a 48-in. ceiling fan in a closed room with no furnishings. The fan blows air downward to the floor. The air travels along the floor, up the walls, along the ceiling, and is then taken in by the fan. Thus, there is a "wall jet" near the surfaces, as shown by the greater airspeeds near the walls in Figure 4.2. This effect tends to improve the surface-to-room heat transfer.

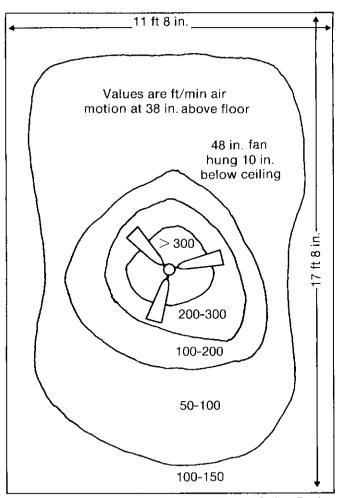


Figure 4.2. Approximate Airflow Patterns From a Ceiling Fan in a Room With No Furniture. Fan Speed Set at Maximum. Ceiling Height = 8 ft.

A ceiling fan will produce effective airspeeds for a distance of up to one fan-blade diameter away from the center of the fan. Airspeed contours in section view are given by Aynsley et al. (1977). Fan airspeeds are available from manufacturers' data.

A New Concept Using Ceiling Fans

A frequent problem in the Southeast during the summer is low windspeeds at night. Even if occupants are willing to tolerate the humidity, low nighttime windspeeds result in poor airflow. This can result in house temperatures at night 3-5°F warmer than those outside even if the windows are open. Similar situations exist at moderate windspeeds if the room is not cross-ventilated. One way to alleviate the situation is to use whole-house fans to create airflow and continue to use ceiling or portable fans for airspeed and occupant cooling. Whole-house fans are discussed in Chapter 9.

An alternative solution uses ceiling fans to create both airflow and airspeed. Operable ceiling vents above the ceiling fan are used (Figure 4.3). Insulated

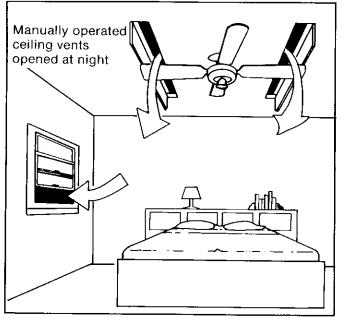


Figure 4.3. Attic-Coupled Ceiling Fan for Nighttime Cooling

vent shutters are operated manually and are kept closed during the day (hot attic) so that the ceiling fan can operate normally. A moderately vented attic (with ridge and soffit vents or with wind turbines and soffit and gable vents) will cool down to within 1°F of the ambient temperature by 11 p.m. The ceiling vents are then opened to pull cool air in from the attic and exhausts it through an open window in the bedroom. This concept is especially useful for rooms with only one window. The ceiling vents should be positioned (as shown in Figure 4.3) such that the vents are positioned near the fan blade tips. The shutters should open as shown to maintain a small clearance between blade and shutter.

Hot air is also drawn into the house during the winter day. Shutters should seal tightly to prevent night heat loss from the room to the cooled attic. Because of the risk of pulling loose fibers in from the attic, it is recommended that this concept not be used in attics with blown-in insulation.

Experiments were conducted in a nominal 12-ft x 18-ft x 8-ft room, with a 48-in. ceiling fan. The 4-ft, 6-in. x 7-in. attic vents were created as shown in Figure 4.3. The window was a 3-ft, 9-in. x 12-in. hole in the wall, with a clear aperture area of 3.67 ft^2 . Tests showed that on a windless morning (wind speed < 0.5 mph) the room without fan assist had four ACH; with ceiling fan on, 20 ACH were created.

During windy nights, the ceiling vents and an open window create good cross ventilation even if the ceiling fan is not operating. Thirty to forty ACH have been measured in the test room with the fan off and wind speeds of 6-8 mph when the wind direction made the window an inlet.

Chapter 5 Natural Ventilation

Introduction

Historically, natural ventilation has been a prime method for summer cooling in the hot humid Southeast. Summer humidities are high, and ambient temperatures are moderate-to-high. Temperatures rarely exceed 95°F; above this temperature, air motion across human skin produces discomfort. Thus, were it not for the high humidity, a properly shaded and ventilated house could be kept reasonably comfortable with fans. Most homes use air-conditioning principally to overcome humidity.

Local tropical architecture suggests the use of oneroom, deep cross-ventilated houses with good shading and large operable windows, but such an arrangement is not compatible with efficient airconditioning, winter heating, and small lot sizes. Thus, one must consider design techniques that promote natural ventilation in small compact houses with moderate window areas (approximately 12% of floor area).

Except near the windows, small window areas alone are not likely to produce sufficiently high interior airspeeds for occupant cooling. Strategic location of small windows can provide sufficient airflow to exhaust heat from a house so that interior temperatures are comfortable. Air-circulating fans (paddle, ceiling, oscillating) are recommended for occupant cooling in all rooms of the house.

Natural ventilation should be used only to create volumetric flow; i.e., air exchanges, to remove heat from a house. Fans are to be be used to create airspeed for occupant cooling. Thus, a house can be designed both for ventilation during mild weather and for backup cooling or heating during inclement weather. Small windows will not create excessive loads on the mechanical equipment, and ceiling fans will continue to save energy even when the airconditioner is on.

When winds are inadequate or when adjacent houses block prevailing winds, natural ventilation may be insufficient; a whole-house fan should be used to provide airflow for heat removal. Whole-house fan selection guidelines are presented in Chapter 9. Unless grossly oversized, whole-house fans will not provide adequate airspeeds for occupant cooling, though selective window opening can provide some cooling in a particular room. It is a good substitute for natural ventilation but is not a proper substitute for a ceiling fan. Even with a whole-house fan, an air-circulation fan should be provided in all rooms, or the concept suggested at the end of Chapter 4, which combines the functions of a ceiling fan and a whole-house fan, should be substituted.

Savings From Ventilation

The savings from ventilation depend on many factors: (1) average air change rate per hour produced by ventilation, which is a function of building geometry and windspeeds or whole-house fan capacity, (2) building construction [low mass or high mass], (3) the climate, and (4) the temperature and humidity at which a house is maintained.

Consider data collected on a low-mass, 3 bedroom/2 bath house, continuously vented by a whole-house fan at 15 ACH. Typical internal and solar gains are present, and humidity is not of concern. The data (Figure 5.1) show that 15 ACH keeps the house an average of 2.5°F hotter than outdoors, although peak indoor afternoon temperature can be 5°F hotter than outdoors. Since the indoor-to-outdoor temperature difference is inversely proportional to ACH, one can assume that for ACH values of 30 and 7.5, average temperature differences will be 1.25°F and 5°F, respectively. An ACH of 7.5 is likely to be available in any house with open windows; hence, that level was assumed in the base case house. It was also assumed that there will be no cooling load if the ambient temperature drops below 73°F (78°F is the house set point). Figure 5-1 was prepared on this basis. 5.2 G

Since good ventilation occurs at 30 ACH, the permissible temperature difference would be 1.25° F. Thus, to maintain the house at 78° F, one could ventilate whenever the ambient temperature is 76.75° F or lower. In cities with humid climates, 12-25% savings is possible from good ventilation (Figure 5.2). Percentage of savings increases as one moves north since cooling loads occur primarily during the day and since more daylight hours remain below the 76.75° F criteria. However, total savings is greater in the South since base loads are much higher. From the results in Figures 3.2 and 5.2, savings in Miami due to ventilation would be approximately ($6190 \times 11.8\%$) 730 kWh while those in Baltimore would be approximately ($1110 \times 25.5\%$) 280 kWh for the cooling season.

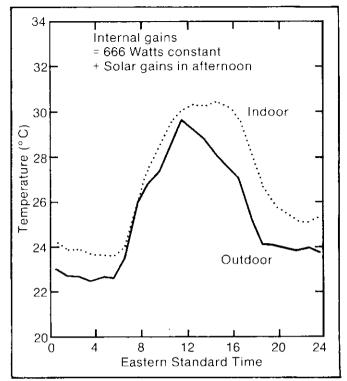


Figure 5.1. Indoor and Outdoor Temperatures in a 24-hour ventilated Low-Mass Residence at the Florida Solar Energy Center, With an Average Ventilation Rate of 15 ACH. (Data for Oct. 9, 1982)

Multiplication of kWh savings by local utility cost/kWh will give seasonal dollar savings.

A recent study of various building types (Fairey et al. 1986) indicates ventilation energy savings substantially higher than those in Figure 5.2. For an energyefficient frame building with no east or west windows, with roof and wall radiant barriers, and with reduced infiltration and internal load, energy savings are increased 50% over those in the figure. A massive building with exterior wall insulation doubled the energy savings in Figure 5.2. Energy-efficient buildings reduce the base cooling load and can take advantage of ventilation cooling better than typical buildings.

Figures 3.2 and 5.2 were prepared with 78°F as the desired house temperature. If the house is kept at a higher temperature (e.g., 80°F or 82°F), then, depending on climate, an additional 7% to 10% savings in cooling costs can be obtained per degree F of thermostat increase, as noted at the beginning of Chapter 4.

Although a naturally ventilated house with moderate window area will not have high airspeeds, it will have higher room airspeeds than a closed and airconditioned house. An increase in airspeed from 20 ft/min (the still-air value) to 50 ft/min allows a 2°F increase in space temperature with no sacrifice in

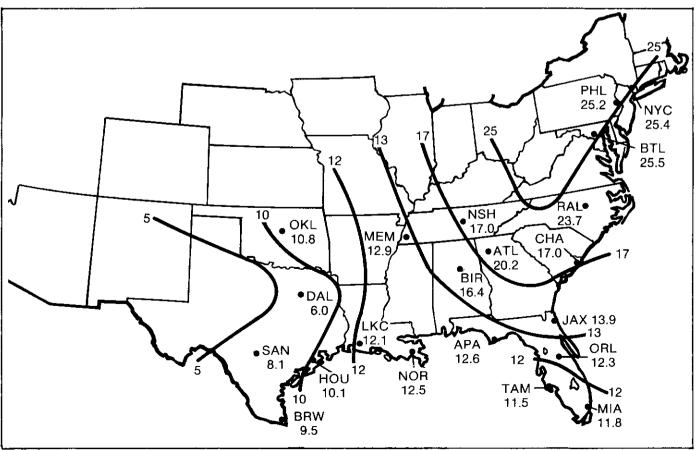


Figure 5.2. Percent Savings in Cooling Costs Possible From Good Natural Ventilation

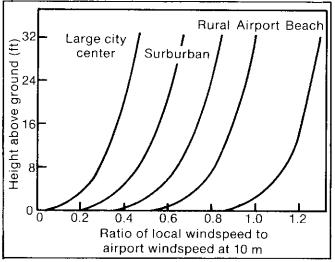


Figure 5.3. Windspeed Variation With Height for Various Terrains

comfort (see Figure 4.1). On average, natural ventilation can provide room airspeeds of 50 ft/min. Thus, without the use of fans, a ventilated house can be kept at 80°F with the same comfort level as an unventilated house at 78°F. An additional 14-20% (7-10% per degree F) savings may be attributed to natural ventilation beyond that presented in Figure 5.2.

The ventilation-savings map in Figure 5.2 shows decreasing percentage savings as one moves to the Southwest because the low-mass frame house analyzed there would have a cooling load primarily in the daytime. Daytime temperatures are very high in the arid Southwest; thus, the potential for daytime ventilation is small. At night, when temperatures are cool, there is hardly any cooling load. This brings an important design point into focus. In the Southwest, a low-mass house is a thermal liability. A high-mass house will do much better because it can be ventilated at night and closed during the day; high internal mass can carry most of the daytime load.

So far, humidity has not been addressed. In the Southeast, during the extremely humid months, ventilation may introduce excessive moisture into a house. When temperatures rise, an air-conditioner, once started, will run longer to extract the moisture. Therefore, any savings from ventilation could be reduced. This topic is under intensive research, and experimental and theoretical analyses are currently underway. Definitive answers are not yet available, but the following observations are made.

- If a house is to be maintained at 78°F or less and ceiling fans are not used, then it is probably not a good idea to ventilate at night and air-condition during the day during the extremely humid months of July and August (and September in central and south Florida).
- If ceiling fans are used and occupants would like to ventilate as much as possible during the humid

months, then furnishings, drapes, carpets, and wall papers that do not absorb much moisture should be used (e.g., rattan rather than upholstered furniture and low-permeability paints and finishes). This will reduce the potential for humidity absorption and buildup in a house caused by ventilation. When the air-conditioner is turned on, it may not have to run unusually long to extract the moisture.

Characteristics of the Wind

Wind patterns follow several general trends. Windspeed increases from mid-morning until it reaches a maximum in the afternoon and early evening. Then it decreases to a minimum in the late night and early morning hours. The night-average windspeed is usually about 75% of the 24-hr-average windspeed reported by weather bureaus. Appendix B provides a summary of airport windspeed and direction data, along with other climatological data, for southeastern U.S. cities.

Windspeed increases with height and is generally recorded at an anemometer height of 10 meters above ground; it is zero at ground level. Its increase with height depends on the type of terrain (Figure 5.3). Windspeed at window level is much greater at the beach than it is in a suburban location. The profiles in Figure 5.3 have been drawn from civil engineering correlations for strong winds. For natural ventilation practice, the ratio of local-to-airport windspeeds is probably smaller than that indicated, but definitive data are not available. Note that Figure 5.3 is just for terrain. The presence of neighboring buildings reduces windspeeds even more at window level. Considerable fluctuations in wind direction occur in natural wind, particularly in surburban and rougher terrains. In suburbia it is common for wind direction to fluctuate rapidly 20 to 45 degrees from the average direction. Thus, an easterly wind can come anywhere from the northeast to the southeast. This has considerable design significance, as will be seen in later chapters. In the presence of buildings, wind profiles become highly random for heights below building eaves. There is usually no clear profile below eave height.

In addition to prevailing breezes, land and sea breezes arise in temperate island locations and in some coastal locations. During the day the land is heated, hot air rises, and cooler sea breezes blow toward land. The process is reversed at night. As land cools below sea temperature, a land breeze is created in a direction opposite to the daylime sea breeze. The interaction of land and sea breezes with prevailing trade winds significantly changes the overall windspeed and direction in coastal locations of many islands (e.g., Hawaii, and Puerto Rico). This day-to-night shift in wind direction must be taken into account, when appropriate, in the design of naturally ventilated buildings.

Chapter 6 Principles of Airflow in and Around Buildings

Basic Principles

An understanding of airflow around buildings is necessary in order to design well-ventilated buildings. Figure 6.1 shows, in plan view, airflow past a solid building. The wind is slowed and creates a positive pressure on the windward face. A cushion of air on the windward face diverts the wind to the building's sides, and the flow separates from the building at the windward face corner. High-speed flow along the side walls creates a negative pressure (suction). A large slow-moving eddy develops on the leeward face, with a suction smaller than that on the sidewalls.

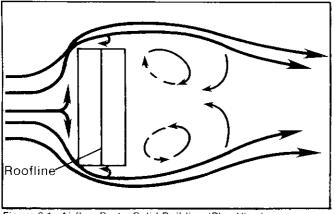


Figure 6.1. Airflow Past a Solid Building (Plan View)

If windows are placed in the windward and leeward sides, the building will be cross-ventilated (Figure 6.2). Note the eddys that develop against the main airflow direction. Cross-ventilation can be further improved by placing two outlets of total area equal to the inlet on the building sidewalls rather than on the leeward wall. Ventilation improves because of stronger suction at the sidewall, and more recirculation will be set up in the room because of air inertia (Figure 6.3). Winds frequently shift directions and can strike the building at various angles. For such oblique winds, ventilation will be better for rooms with windows on three adjacent walls (Figure 6.4) than for those with windows on two opposite walls (Figure 6.5).

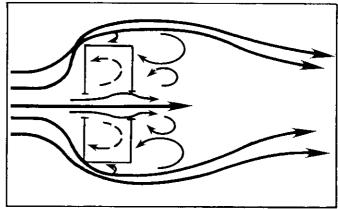


Figure 6.2. Airflow Through a Building Ventilated by Windward and Leeward Windows

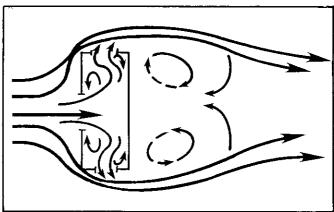


Figure 6.3. Airflow Through a Building Ventilated by Windward and Side Windows

Figures 6.2 through 6.5 illustrate airflow patterns in cross-ventilated rooms. Windows on two walls do not guarantee good cross-ventilation (Figure 6.6). The stronger suction of the sidewall windows will generally create outlets. However, since both the sidewalls and the leeward wall are under suction, ventilation will be minimal.

As an example of airflow in multiroom buildings, consider flow patterns in a ventilated arrangement of five rooms (Figure 6.7). Room A of the five is the best ventilated since the inlet is located in the highest pressure zone and the outlet is in a negative pressure

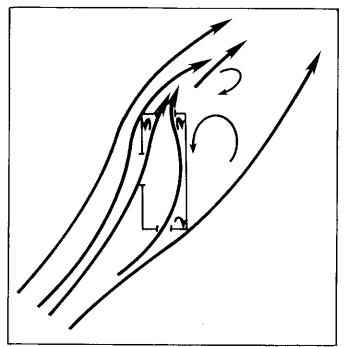


Figure 6.4. Airflow Through a Building With Windows at Adjacent Walls for Oblique Winds (Excellent Ventilation)

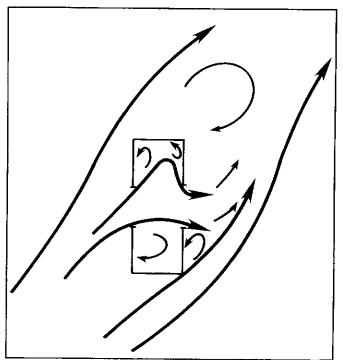


Figure 6.5. Airflow Through a Building With Windows on Opposite Walls for Oblique Winds (Good Ventilation)

zone (although not in the highest suction region). Room B is almost as well ventilated, with inlet and outlet located in the highest pressure and suction zones. Air has to change directions twice, which results in slightly less airflow than in room A. However, if the wind is at a slight angle to the

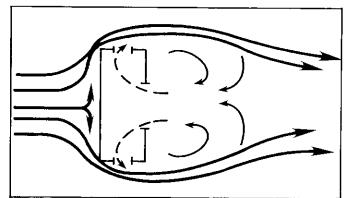


Figure 6.6. Airflow Through a Building With all Windows on Leeward or Sidewalls (Poor Ventilation Since all Windows are Under Suction)

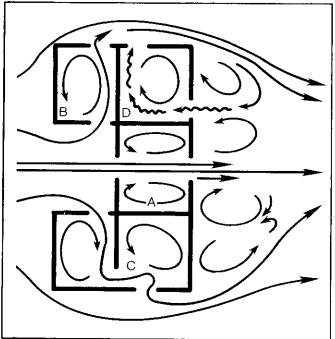


Figure 6.7. Airflow Pattern in a 5-Room House

building face, then room B may be better ventilated than room A.

In room C the partition wall reduces ventilation, and there are some still corners. Room D is the least ventilated because both inlet and outlet are in suction regions. However, the flow direction is as shown because the side wall has a higher suction than the leeward wall.

Effects of Grouping Buildings

All previous building ventilation patterns have been shown for an isolated building. In tract housing, buildings are placed close to each other, and the effects of neighboring buildings can be significant. The extent of the leeward wake depends on building shape and wind direction. For a typical house, the wake extends roughly four times the ground-to-eave height, or about 36 ft (Figure 6.8), as tested by Evans (1957). Therefore, if the gap between buildings is 36 ft or more in the direction of the wind, the general wind direction will remain roughly unchanged, and the ventilation diagrams will be valid. This will generally be the case if house rows face the wind or are at 45 degrees to it at most. This will be true for typical 75-ft × 100-ft lots (Figure 6.9). The only effect of building grouping here is to reduce windspeed at leeward buildings. However, if the wind were from

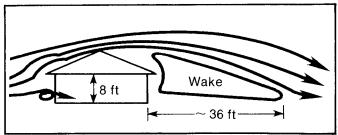


Figure 6.8. Wake of a Typical House

the east, all houses would be poorly ventilated because they would be in the wake of each other.

Ventilation Augmentation by Wing Walls

Many residences and large buildings have rooms with only one external wall. These rooms are difficult to ventilate effectively. With one window in such a room, ventilation will be negligible even if the wind impinges directly on the window since there are no distinct inlets and outlets. Ventilation can be improved somewhat if two windows are used, placed as far apart as possible. Ever-present fluctuations in the natural wind direction will create moderate amounts of pressure difference across the two windows, particularly if the wind direction is perpendicular to the windows (Figure 6.10).

Airflow in rooms with two windows can be further augmented by devices called wing walls that are added to the building's exterior at the inner edges of the windows. These create positive pressure over

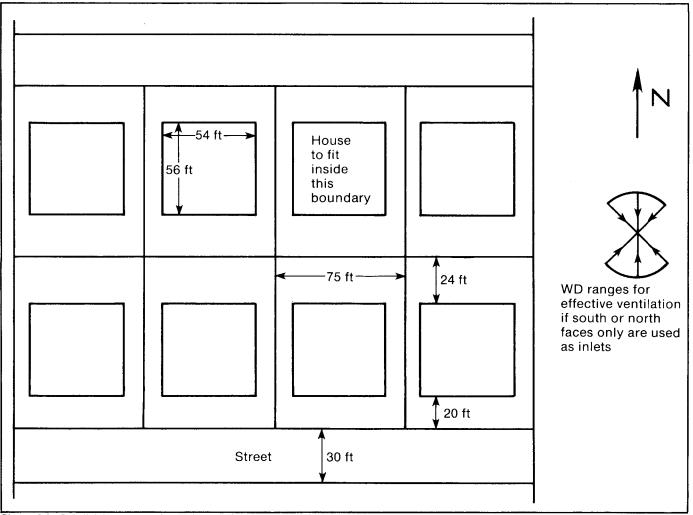


Figure 6.9. Subdivision Layout for 75 ft x 100 ft Lots

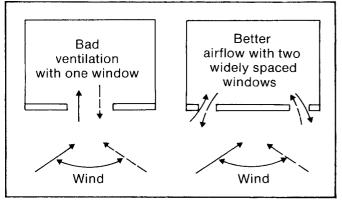


Figure 6.10. Two Windows Ventilate Better Than One in Rooms With One Outside Wall

one window and negative pressure over the other, achieving cross-ventilation of the room (Figure 6.11). Wing walls should extend from the ground to the eaves. However, properly placed single-sash casement windows can create a similar effect. Wind directions for which wing walls are effective are also shown in Figure 6.11. Note that wing walls are effective only for windward windows; they will not affect airflow at windows on the leeward side.

Experiments conducted at the Florida Solar Energy Center (FSEC), using the residential-scale Passive Cooling Laboratory (PCL), investigated airflow in rooms with windows on one wall only, both with and without wing walls. The results are summarized below. The experiments were performed in the southeast room of the PCL (Figures 6.12 and 6.13). The wing walls are shown adjacent to the 3 ft, 11 in. wide by 3 ft high window apertures. The internal room dimensions are 17 ft, 7 in. x 11 ft, 8 in. x 8 ft, 1 in. high; each window area is equal to 5.7% of the floor area and 8.3% of the east wall containing the two windows. Note that these "windows" are actually holes in the wall with no glazing. Wood doors, the size of the opening, are used to open and close the apertures. The upward-sloping window overhangs were in place for all experiments. Room airflow was

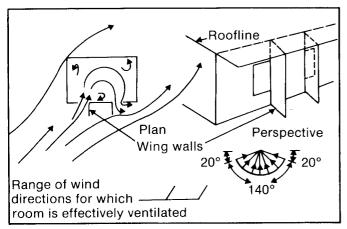


Figure 6.11. Good Ventilation Through Windows on One Wall When Wing Walls are Added

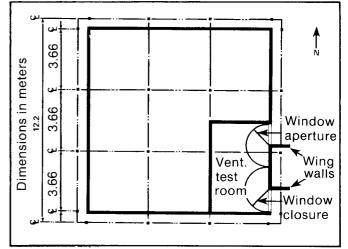


Figure 6.12. Plan View of FSEC Passive Cooling Laboratory (PCL) Showing Location of Test Room and Wing Walls

measured by the sulfur hexafluoride tracer-gas decay technique. Outside windspeed (WS) and wind direction (WD) were measured simultaneously at a height of 10 meters. Measured airflow was converted to an equivalent inlet airspeed (u) by dividing the airflow by the inlet area. Since the inlet and outlet areas are equal, u is also the average outlet airspeed. Values of u were made nondimensional by dividing by WS.

Results are plotted as room airflow (expressed as u/WS) against wind direction (WD) (Figure 6.14). If airflow is solely a result of pressure difference across inlets and outlets, then airflow should be proportional to WS. Thus, one would expect a unique curve when u/WS is plotted against WD. Data scatter is a result of wind turbulence. Nevertheless, improvement because of wing walls is evident. The solid line is consistently better than the dashed line when the windows are windward; i.e., when WD is between 0 and 180 degrees (see inset, which clarifies wind directions). Unequal peak values in the solid line reflect the corner placement of the apertures. The southern aperture is directly at a corner around which air escapes, creating reduced pressure; the northern aperture is next to a flat wall that traps air, creating increased pressure. Pressure differences between inlet and outlet are greater when the wind is from the northeast (0-90 degrees) and less when the wind is from the southeast (90-180 degrees). For WD between 180 and 360 degrees, when the windows are on the leeward side of the building, there is insignificant difference in room airflow with or without wing walls.

Airflow in the room without wing walls improves for northeast (WD=45 degrees) to east (WD=90 degrees) winds and then declines and flattens out as the WD increases beyond 150 degrees or so (south/southeast winds). This increase in airflow over the baseline is believed to be casued by the creation of a pressure differential across inlets and outlets caused by fluctuating wind direction. As the WD fluctuates, the windows switch roles, alternating as inlet and outlet

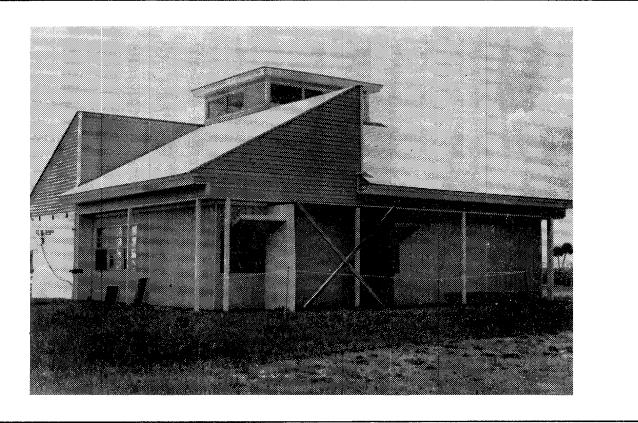
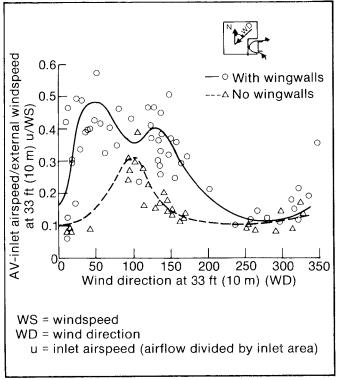
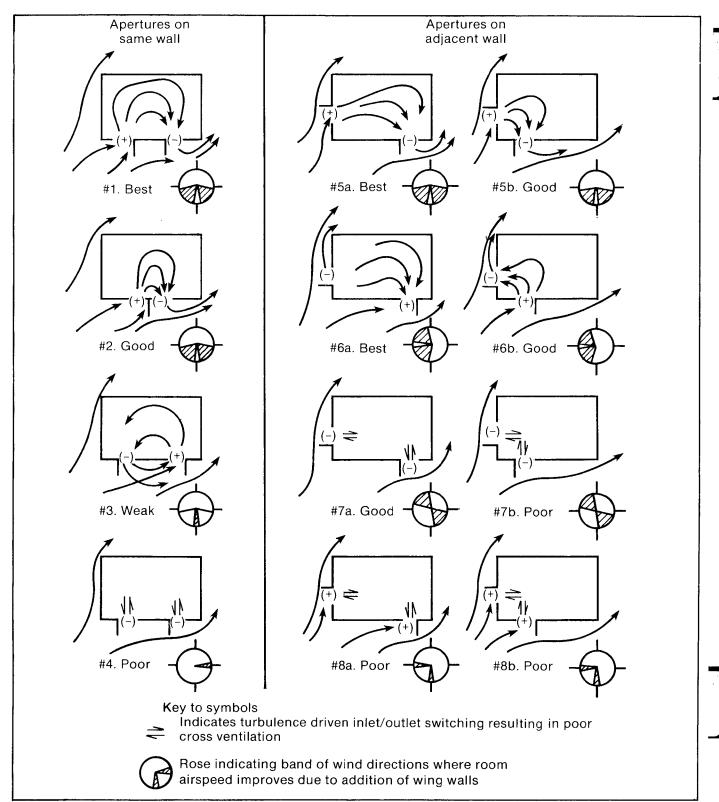
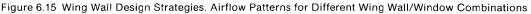


Figure 6.13. Southeast View of PCL Showing Wing Walls and Overhang Over the Two Windows in the East Wall




Figure 6.14. Airflow Data Sets With and Without Wing Walls Obtained in Full-Scale PCL Experiments (Solid and Dashed Lines Indicate Authors' Opinion of Data Trends)


and improving room airflow. These alternations of inlet and outlet were confirmed by smoke-flow visualizations. Oscillations are most frequent for easterly winds (WD approximately 90 degrees), thus, the peak in airflow.

An interesting result for the no-wing wall case is the minimum value of u/WS of about 0.1. For this case, with a clear aperture area of only 5.6% of the floor area, the inlet airspeed is 1/10 the 10-meter-high WS value. This corresponds to 3.7 room air changes per hour (ACH) for every mph of outside WS. Therefore, in a 7 mph wind, one would get 26 ACH for this room just by having two windows and no cross-ventilation. Of course, cross-ventilation is a much more powerful ventilation mechanism. With wing walls, which turn the room into a cross-ventilated one for WD between 20 and 160 degrees, the u/WS value averages around 0.4. Thus, for every mph of outside WS, one gets about 15 ACH. The double peak in the curve is caused by the highest pressure differences across the windows occurring at oblique wind directions of about 55 and 150 degrees. For WD of approximately 90 degrees, one would expect minimal mean pressure difference across the windows. However, significant airflow does occur because of WD fluctuations that create pressure fluctuations and good ventilation, both with and without wing walls, as explained earlier.

Design Strategies Using Wing Walls

When ventilating rooms with various wing wall strategies, effectiveness is limited to wind directions that cause one window to be in a positive pressure zone and the other to be in a negative pressure zone. Figure 6.15 shows expected ventilation results for several wing wall configurations or patterns, all drawn for southwest winds only. Actual wind directions for which wing walls would be effective are shown by wind direction bands. In some cases the best strategy is difficult to define, and windows and

their wing walls must be specifically placed to take advantage of a given site condition. For example, pattern No. 7a in Figure 6.15 would prove to be an excellent, if not the best, design decision where alternating northwest and southeast breeze patterns occur (e.g., a land breeze by night and a sea breeze by day) as indicated by the wind direction band. On the other hand, if this pattern is adopted for a predominant southwest wind direction, it will be a design failure. Pattern No. 7b is considered to be poor in all wind directions because of extensive short circuiting caused by the close proximity of the windows. Airflow will occur only through that small corner of the room.

These patterns also illustrate the benefit in overall room airflow gained through the window separation (No. 5 and No. 6, a versus b, and No. 1 versus No. 2). However, pattern No. 2 is helpful in situations where rows of small rooms allow only single-sided ventilation in double-loaded corridor designs. For larger rooms, where spacing permits, pattern No. 1 should be used. Wing walls can become significant elements of design and unity in such buildings.

In general, wing wall protrusions should be equal to open window width. However, protrusions equal to half window width also will work well. Figure 6.16 provides recommended dimensions and minimum separation distances between multiple sets of wing walls. No minimums are given for window placement with respect to internal partition walls since these would depend on the desired cooling strategy (i.e., whether one wants to cool the partition wall or wants to direct airflow into the room). Complete residential designs employing wing wall strategies are described in Chapter 7.

Trees and Landscaping to Channel the Wind

Strategically placed dense trees on the east and west side of a house can effectively block the summer sun. Vegetation, however, can also reduce airflow. Airspeed reduction can be 30-40% near a tree depending on canopy size. Architectural drawings occasionally show shrubbery or trees redirecting or catching the

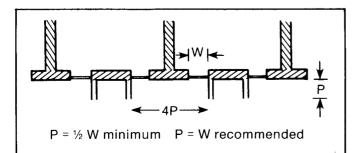


Figure 6.16. Recommended Wing Wall Dimensions and Separations

wind in a manner similar to the wing wall effect discussed earlier (Figure 6.17). Fencing or dense shrubs may accomplish this, but field data substantiating this effect are not available. Shrubbery effectiveness is reduced by a leaf's tendency to bend and align itself with the wind instead of serving as a stiff redirecting barrier. The use of solid fencing or walls, rather than trees or shrubs, for redirecting wind is recommended.

Proper planting of trees can be effective as a community strategy. For example, older parts of St. Augustine, Florida are effectively shaded by tall spreading trees. The trees allow breezes to pass at the first three stories while providing shade to these lower building levels and to pedestrian walkways.

Airflow on Roofs and Whole-House Roof Ventilators

Because of compact floor plans and internal walls, modern houses are often difficult to cross-ventilate. In some situations, roof apertures may be useful. Note that this discussion is about whole-house ventilation through roof apertures and not attic ventilation.

Figure 6.18 shows airflow patterns, in elevation, past a building with no apertures. The high-pressure region on the windward face creates two flows. A downward vortex is created near the ground which produces airflow away from the building. The upper half of the flow goes over the roof. The upward flow separates at the roof edge and creates a strong negative pressure on the eaves. Flow, however,

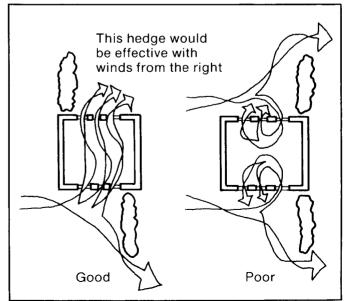


Figure 6.17. Windbreaks to Promote Cross Ventilation (left). The Design at Right is Poor and Will not Cross Ventilate.

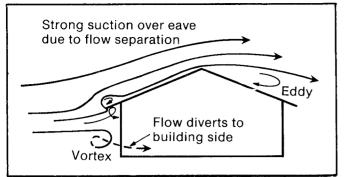


Figure 6.18. Airflow Past a Building (Side Elevation) With a 5 in 12 Roof Pitch (Flow Pattern Will be Similar for any Roof Pitch Greater Than 3 in 12)

remains attached over most portions of the windward roof and separates again at the roof peak. For flat or low-pitch roofs (2 in 12 or less) flow may remain separated over the entire roof (Figure 6.19).

Areas of strong negative pressure created on the roof top, especially those near roof ridges, can be used as exhaust areas (Figure 6.20). The top 18 inches of partition walls in the living space are louvered to allow airflow. Even without a roof-level aperture, these louvers can improve ventilation at the expense of some acoustical privacy. In this design, room A will ventilate as shown. Because of strong roof suction, the window in room B may occasionally be an inlet (dotted arrow), although most of the time it will be an outlet (solid arrow). The exhaust space above ceiling level is likely to act as an exhaust at all times. Since roof cupolas are difficult to protect against rainstorms, operable windows are shown in the cupola. Opening and closing of such windows are difficult. Louvers and similar devices at the cupola will not protect against severe rainstorms and, consequently, are not recommended. In this design, wind-driven ventilation will act with the rise of hot air since outlets are at the top.

Another possible type of high-level vent is a clerestory window (Figure 6.21). When winds are from the left, the design will ventilate as shown by the solid arrows; the wind effect helps the chimney effect. However, if winds are from the right, a clerestory window will act as an inlet and the room windows as outlets; daytime hot air adjacent to the roof may be

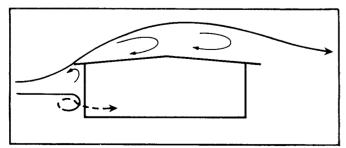


Figure 6.19. Airflow Past a Solid Building With Roof Pitch Less than 2 in 12 (Note That the Airflow is Separated Over the Entire Roof)

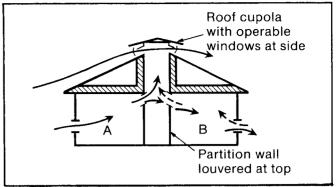


Figure 6.20. Whole-House Ventilation Through Roof Level Outlet Windows and Low Inlet Windows (Dotted Arrow Shows Alternate Possible Flow Path)

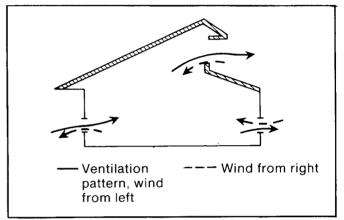


Figure 6.21. Whole-House Ventilation Through Clerestory Windows

forced into the house. Thus, single-sided clerestory ventilation may not be very effective in all situations.

Innovative Ventilators

The earliest example of innovative ventilator designs are Iranian Wind Towers (Bahadori 1978). Three experimental and unique ventilator designs are described here to provide additional ideas. Further development and testing is needed before construction can be recommended.

The first design is called "La Sucka," since it always provides a suction at the rooftop outlet. La Sucka (Figure 6.22) uses simple backdraft dampers made from 3-mil plastic film mounted on a screened frame. These dampers close off ventilation-shaft apertures on the windward side of the ventilator but allow outlets on the leeward and adjacent sides of the ventilator to remain fully open. As wind direction and pressure distributions change, opposing dampers open and close and produce a constant outflow of air through the ventilator. Long ridge-mounted ventilators are constructed with dampers on their long sides while square or hexagonal-shaped ventilators should be constructed with dampers on all faces.

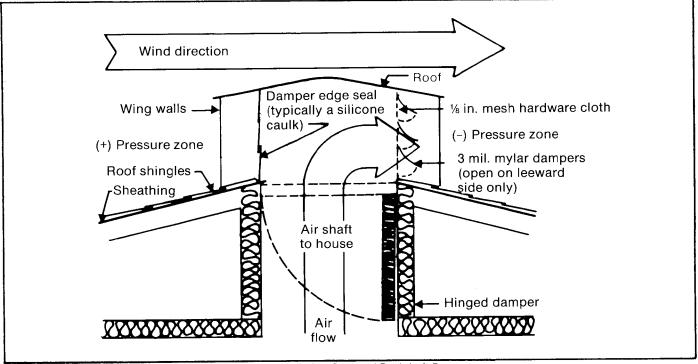


Figure 6.22. "La Sucka," a Natural Ventilation Device Employing Opposed Backdraft Dampers

Tests show La Sucka to be as effective as a suction ventilator (Figure 6.20). The chief advantage of the design is that it is automatically rainproof since the windward dampers are always closed. In practice, rainproofing by La Sucka has not been fully realized with completely exposed dampers because in high winds the plastic dampers occasionally tear and sometimes stick to themselves when wet. Until better materials are tested, dampers must be shielded with exterior rain louvers. An additional problem is noise created by the flutter. See Fairey (1981) for a detailed description of a La Sucka retrofit on an existing residence.

Concern about security has spurred development of two windowless house ventilator designs. The WIN (windowless night) ventilator (Figure 6.23) has been shown in scale-model tests to be effective. The key to successful ventilation is to lower the central rib about 1 ft below ceiling level. Major problems are

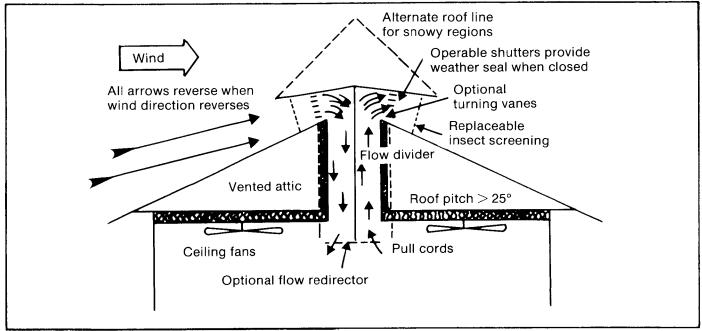


Figure 6.23. Windowless Night (WIN) Ventilator

rain protection and night-only operation. Day operation is not possible since hot air adjacent to the roof will enter the building.

The windowless double-ceiling ventilator (Figures 6.24 and 6.25) is multidirectional and has better rain protection and aesthetic appeal than the WIN design. It consists of a ceiling plenum created by a double-

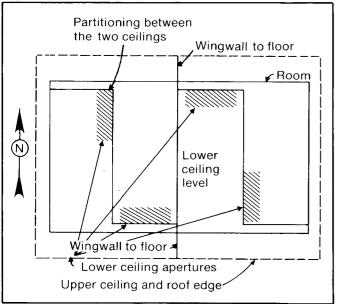
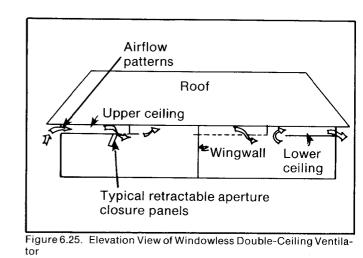



Figure 6.24. Plan View of Windowless Double-Ceiling Ventilator

ceiling arrangement. Positive and negative pressures are generated over alternate apertures by ceiling partitioning. Wing wall use should improve performance in southeast and northwest winds. Scalemodel tests, however, show this design to be inferior to other designs.

Cost-effectiveness of these three designs is not yet established. The security problem addressed by the last two can be alleviated by decorative iron window grills, common in many parts of the world and becoming popular in the southern U.S.

Chapter 7 Window Design and Airspeeds in Naturally Ventilated Rooms

Although necessary for aesthetics and fire egress, windows are a thermal liability in the summer since they permit solar gain and have low R-value. The only positive energy aspect of windows in summer is that they permit natural ventilation. This chapter discusses window types, shapes, location, and sizing for natural ventilation. Data are presented on room airspeeds attainable in naturally ventilated rooms.

Window Types

Various residential window types are shown in Figure 7.1. Since fixed glass contributes nothing to natural ventilation, the use of awning, projection, or casement windows is recommended. The jalousie type is not recommended since it leaks and causes excessive infiltration when closed. Any window should have good weatherstripping and be constructed to minimize infiltration. For rain protection and minimum building protrusion, awning or projection windows are recommended over casement windows. Fire egress requirements and wing wall considerations, however, may dictate a casement window in some rooms.

Window tests conducted by Holleman (1951) utilized full-scale and wind-tunnel analyses of double-hung, projection, and casement windows. Other window types were tested, in model form only, in the uniformspeed wind tunnel. The tests showed that projection windows maintained a horizontal airflow pattern in the room when fully open (about a 30 degree angle to the horizontal) caused by the open slot created between the top of the window and the top of the sash. However, under less than fully open conditions, airflow was deflected upward (Figure 7.2). Many conventional awning windows will always direct airflow upward since there is no slot between sash and frame. Because of the wing wall effect, casement windows admitted approximately the same amount of air when the outside air direction was from an angle as when it was perpendicular to the window wall (Figure 7.2). With double-hung, single-hung, and sliding windows, researchers found that air entered the openings and continued inside in the same direction as the outside wind.

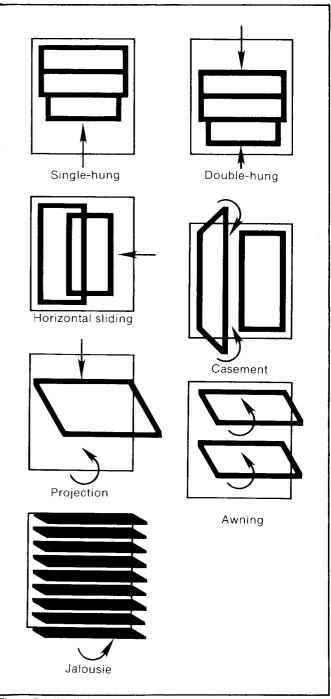


Figure 7.1 Window Types

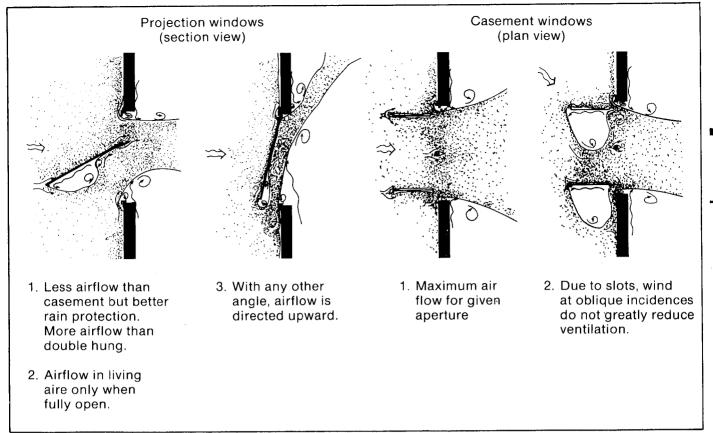


Figure 7.2 Airflow Patterns Through Windows

Ialousies were the most versatile window type for air-control qualities. Regardless of exterior wind angle, jalousies directed room air to the angle at which the louvers were adjusted. Unfortunately, jalousie windows are difficult to seal properly and allow significant air infiltration during cold months or when air-conditioning is desired. They are not recommended where mechanical conditioning equipment will be used unless additional seasonal window coverings are used. Because such use requires significant owner operation, it is not highly recommended. Well-made awning and projection windows are recommended for rain protection and low wind blockage. Note, however, that poorly made awning windows do not seal well, and their crank mechanisms have had reliability problems. Moreover, they may interfere with certain types of window treatment.

Although most windows are approximately square, other aperture shapes (e.g., a horizontal slot in the wall) are possible. Wind-tunnel tests by Sobin (1981) measured room airspeeds in scale models at sitting height as a percentage of outside air velocity and as a function of wind direction (Figure 7.3). Horizontal windows, with widths eight times their height, were superior to square or vertical windows. Note that horizontal windows not only produce more room airflow but also do it over a wider range of incidence angles. Thus, in locations where prevailing wind directions shift, horizontal window shapes will be better than vertical or square windows with the same area. If wing walls are used, vertical windows are recommended.

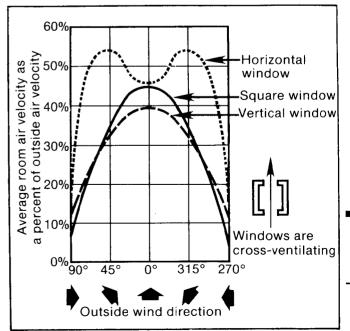


Figure 7.3. Window Shape Performance in Relation to Wind Direction

Note, however, that these results are based on a limited number of room airspeed tests and not on total airflow measurements. Moreover, more recent results from Sobin (1983) indicate that the superiority of horizontal windows is much less if the aspect ratio (width-to-height ratio) is reduced below 8:1. In the authors' opinion, horizontal apertures will be superior to vertical windows but not to the extent depicted in Figure 7.3.

Window Location

In general, for ventilating low-mass houses (e.g., frame homes or inside-insulated concrete-block homes), window location is not critical. Windows should generally be positioned as far apart as possible so that air does not short circuit between inlet and outlet. In Figure 6.15, No. 1 over No. 2, No. 5a over No. 5b, etc., are recommended. Window placement in low-mass houses should be to maximize room air mixing so that all surfaces give up their heat to room air that will be exhausted. With ceiling fans running. stratification is usually negligible so there is no need to direct airflow in a certain direction. Thus, in onestory designs, there is no need to locate some windows low to catch cool air or high to exhaust hot air. In two-story designs, windows should first be located to account for high and low pressure areas and then located low for inlet and high for exhaust.

For massive homes with one or two massive walls (e.g., a Trombe wall or massive partition walls) inside the house to store heat, window location becomes important. If the objectives are to provide night ventilation and to wash the massive wall with airflow to increase heat transfer, then inlets should be positioned close to the wall to create a "wall jet." This can be done by positioning one edge of the inlet window close to the wall (Figure 7.4). Outlet window location does not significantly alter room airspeed patterns, so inlet location is more important than outlet location to control room airflow.

Window Sizing

Airflow increases in rooms as window size increases. An inlet smaller than the outlet creates higher inlet velocities; an outlet smaller than the inlet creates low but more uniform airspeed through the room. Room airflow depends on the effective area (A) and is primarily controlled by the smaller of inlet and outlet areas (A_i and A_o). The effective area is given by

$$A = A_0 A_i / (A_0^2 + A_i^2)$$

A is always smaller than either A_i or A_o . Increasing either inlet or outlet only is less beneficial than increasing both. In other words, for a given amount of total aperture area, it is best to have equal inlet and outlet areas.

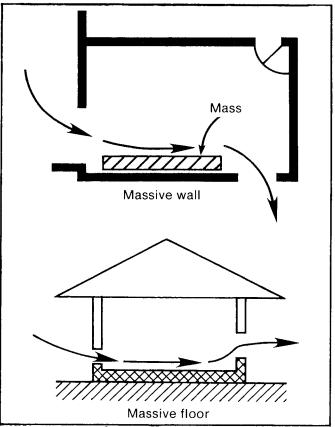


Figure 7.4. Window Locations to Create Wall Jets to Wash Massive Elements

Total window area needed depends on required airflow. A design goal of 30 air changes per hour (ACH) for the design month is suggested. This results in a total operable window area on the order of 10-15% of the floor area for various geographic locations. A detailed window-sizing procedure is given in Appendix A. Note that 10-15% operable window area is not excessively large if 100% operable windows are used. With sliding windows, where 50% of the window is fixed, it will be impossible to attain good natural ventilation with moderate window areas.

The 10-15% figure includes insect screening; i.e., 10-15% operable window area with insect screening will provide 30 ACH under design conditions. Although insect screening reduces airflow, it is a necessity during the summer in the Southeast. Givoni (1976) found that screening an entire balcony would provide more airflow in the room than screening a window alone (Figure 7.5).

Airspeeds in Naturally Ventilated Rooms

Many room airspeed data have been collected by studying naturally ventilated models in wind tunnels. Texas A&M researchers (Evans 1979) pioneered

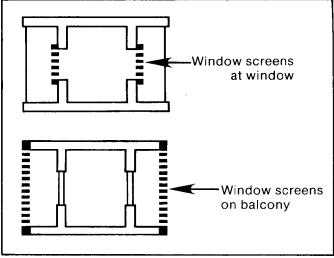


Figure 7.5. Screening the Balcony is More Effective Than Screening the Window

this type of research, and data are available from Givoni (1982, 1968, 1976), Aynsley et al. (1977), and Sobin (1983).

Sobin recently completed an exhaustive analysis of wind-tunnel data for about 120 various window geometries to determine the effect of window shape, size, and location on room airspeed. Results are airspeed ratios, expressed as a percent (internal-toexternal airspeeds, both speeds measured at the same height as the internal measurement; i.e., 4 ft above floor level, full scale) and measured at several locations inside the wind-tunnel model. Sample data sheets are shown in Figures 7.6 and 7.7. Complete results are available from Sobin. The Sobin and Givoni results provide an insight into airflow patterns arising from large-aperture windows.

Note that, on average, 30-40% of the outside wind is available in the room at window level for largeaperture models (total inlet plus outlet clear area equal to 24% of floor area). This suggests that in locations with steady prevailing breezes and no harsh winter weather (Puerto Rico, Hawaii), oneroom-deep naturally ventilated and shaded houses can provide adequate airspeed for occupant cooling without fans. At these high airspeeds, air change rates will be more than 100, so heat rejection will not be a problem either. As mentioned earlier, such large window areas are impractical on the United States mainland.

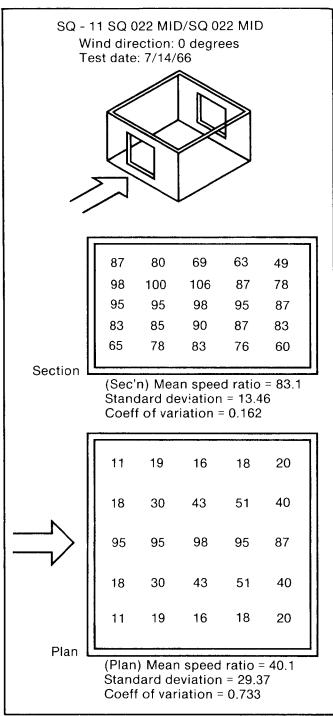


Figure 7.6. Sample Data Sheet From Sobin. Airspeeds in a Cross-Ventilated Room With Apertures on Opposite Walls. Numbers are Percentages of Outside Windspeed at Wall Mid-Height.

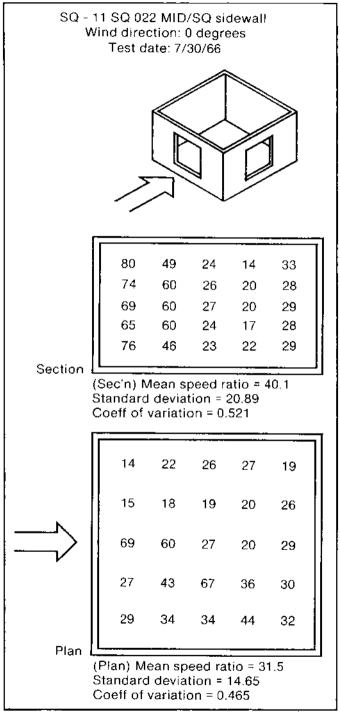


Figure 7.7. Sample Data Sheet From Sobin. Airspeeds in a Cross-Ventilated Room With Apertures on Adjacent Walls. Numbers are Percentages of Outside Windspeed at Wall Mid-Height.

Chapter 8 Naturally Ventilated Home Designs

This chapter presents general ventilation strategies for various room locations, followed by several floor plans for well-ventilated compact houses. Emphasis will be on integration of natural ventilation strategies into conventional single-story housing. Strategies to reduce the need for cooling, such as window shading, ceiling fans, and radiant barriers (Chapters 3 and 4), should be considered before enhancing natural ventilation as discussed in this chapter.

Room Ventilation Strategies

Room location can be categorized as one of six types (Figure 8.1). Shape and exact position may vary, but rooms will typically have either 0, 1, or 2 exterior walls and be either on the windward or leeward side or in the building interior. The three generic windward rooms will cross-ventilate even with the interior door closed (Figure 8.2).

Wing walls (see Chapter 6) or properly located casement windows are crucial to the success of these designs and are suggested for room type 1 with prevailing southeast winds. An optional wing wall to enhance ventilation is suggested for room type 3, but the room will ventilate fairly well for southeast winds and quite well without a wing wall for east winds.

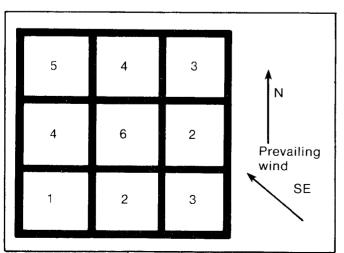


Figure 8.1. Room Location Categories With Regard to Prevailing Winds

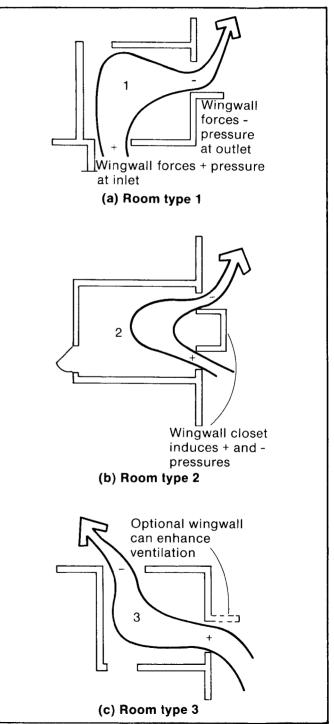


Figure 8.2. Strategies for Ventilating Windward Rooms for Southeasterly Winds

The area between two adjacent wing walls can become a closet or space for a bed headboard or a sofa, and wing wall construction and exterior surface materials can be highly varied. A designer can vary detailing and create new versions of the wing wall/ window relationship so long as the basic principles are not violated.

For leeward room locations 4 through 6, interior doors and wall vents are required to provide adequate ventilation. Even then, ventilation will be poorer than that for windward rooms. Cross-ventilation without wing walls can be used when the building has a room (or space) which is open from front to back or to the sides of the house. A screen door at the entry can frequently cross-ventilate the living area.

Example House Plans

Four small-home plans designed for 75-ft-wide lots are presented in Figures 8.3, 8.5, 8.8, and 8.10. These

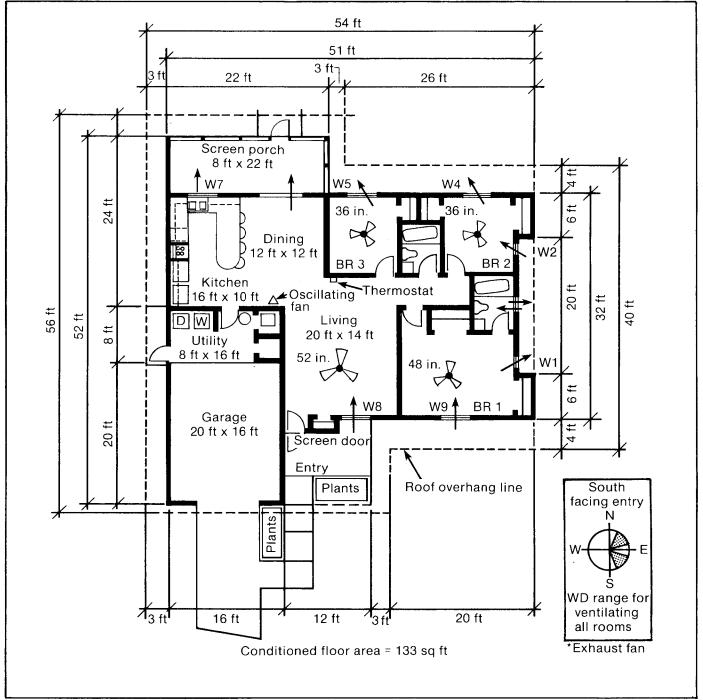


Figure 8.3. A House Plan for South-Facing Lots

illustrate application of airflow principles to practical designs for small homes. Details of wall and roof construction and of insulation levels are not given. Homes have been designed for prevailing east-southeast and southeast winds. Wind directions for which the designs are most effective are shown in each figure. The first four plans, each with 1334 ft² of floor area, are actually the same design rotated to correspond to particular lot orientations and to demonstrate the capability of one design to satisfy ventilation needs independent of lot orientation.

Figure 8.3 shows the floor plan for a south-facing lot. Solar gain from the west is minimized by not using windows. The garage east wall acts as a wing wall to deflect southeast winds into the house; the solid west wall of the screened porch serves a similar function for northeast winds. Closets in BR1 and BR2 are designed to act as wing walls also. The wing wall in BR1 creates a negative pressure on window 1 (W1) and makes it an exhaust, and the wing wall next to W2 makes it an inlet. Bedroom 3 cannot be directly cross-ventilated; the door must be left open in order to cross-ventilate. If the door is closed, then ventilation through the kitchen can be improved further. Arrows in windows indicate natural airflow patterns likely for southeast winds with all internal doors closed (except for the BR3 door). A screen door at the entrance and opening other doors will further improve cross-ventilation. The perspective view (Figure 8.4) clarifies roof lines. The screened-porch roof (not shown) is an integral part of the whole roof. Outdoor model tests of this design show that it ventilates quite well for all wind directions because of the many protrusions that help induce positive and negative pressure zones as natural wind direction fluctuates randomly.

Ceiling fans are used in many rooms. A wall-mounted oscillating fan is proposed to induce air motion in kitchen and dining areas. The kitchen range should have an exhaust fan vented to the outside through a roof vent, and bathrooms should have individual exhaust vents. The thermostat for the heating/cooling unit should be located on an inside wall rather than on a wall to the garage for better comfort and less frequent adjustment. Heating and cooling ducts should run in the conditioned area rather than in the attic. The wall between the garage and the conditioned space should be insulated.

A reverse image of the floor plan is used for a northfacing lot (Figure 8.5). An important feature is the solid west wall of the screened porch which deflects a southeast wind into the house. Awning windows (Figure 8.6) are recommended for all windows in all

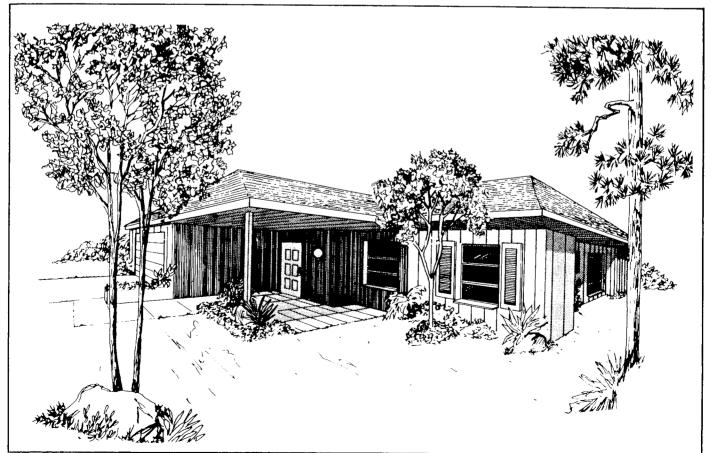


Figure 8.4. A Perspective of the Home in Figure 8.3

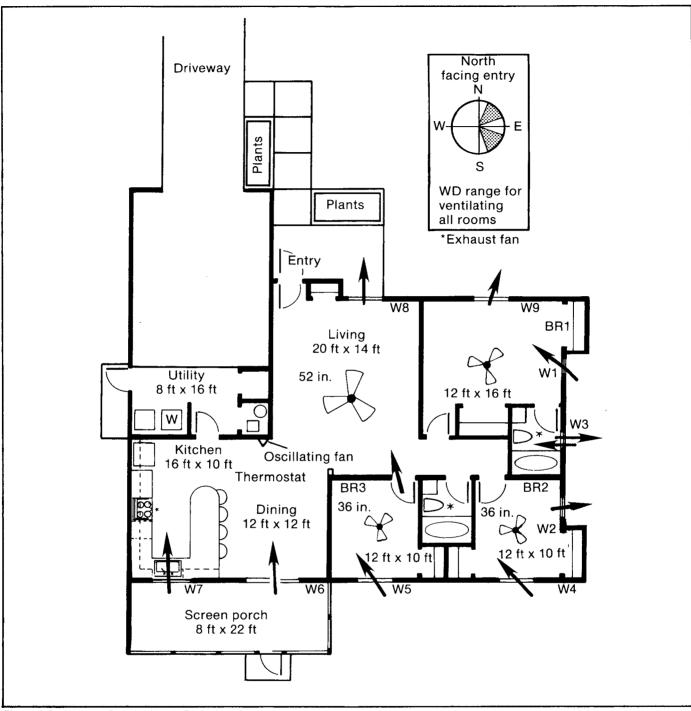
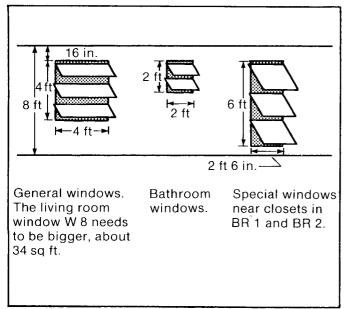
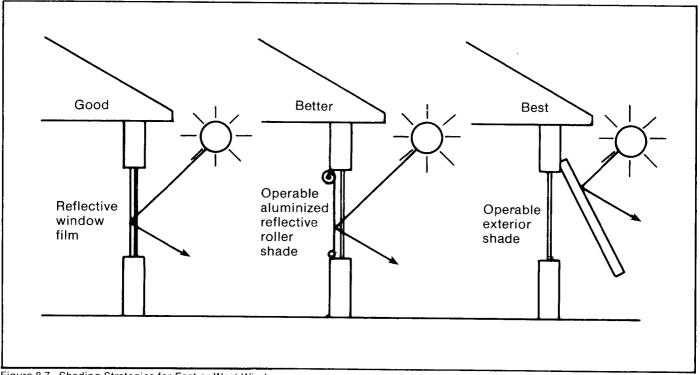


Figure 8.5. A House Plan for North-Facing Lots

plans. They should be of good quality that seal well when closed. Awning windows are recommended over horizontal or vertical sliding windows for better rain protection and to maximize open-window area for a given glass area. Example calculations in Appendix A show that this house in Orlando will require a total operable screened window area equal to 12% of the floor area, or 160 ft². A sliding glass door and an entry door provide 21 ft² each. The remaining 118 ft² are provided by windows. Recommended window sizes and vertical placements in the wall are shown in Figure 8.6. Windows near the wing walls should be vertical to minimize wing wall protrusion from the building.

In these designs, windows on the east or west side are required for good ventilation, but they must be protected from the sun in the morning or afternoon. At a minimum, they should have reflective film, but do not use such film on double-paned glass. An aluminized reflective roller shade, which can be kept up in winter to allow sunlight into the house, is better yet. The best heat-gain prevention scheme for east or west windows is exterior operable awnings, shutters, or sun screens (Figure 8.7). Large overhangs are




Figure 8.6. Recommended Window Types and Sizes

another solution, as discussed in Chapter 3, and shade trees on the east and west sides would also be excellent.

The south-facing plan, rotated 90 degrees, is used for a west-facing lot (Figure 8.8). Wing walls located on the south wall work on the same principle as before (Figure 8.3). Bedroom 1 is ventilated by the wing wall at W1; BR2 is ventilated by W4 and the wing wall at W2; and BR3 is ventilated by leaving the door to the hallway open.

Another small (1360 ft²) home design for west-facing lots (Figure 8.9) has better west sun protection and does not require west windows. The master bedroom is ventilated by a French door or by a large casement window (W1) augmented by the dressing-room wall and the leeward window W9. Wing walls are integrated into closets in bedrooms 2 and 3. The second bedroom is ventilated by windows on both external walls, with a wing wall on W4 to make that window an outlet. A wing wall is not provided on W3 since it would block ventilation for northeast winds. In this design, all three bedrooms are cross-ventilated for southeasterly winds.

The north-facing plan, rotated 90 degrees, is used for east-facing lots (Figure 8.10). The garage acts as a wing wall to direct airflow into the building by creating a high-pressure zone on the east wall.

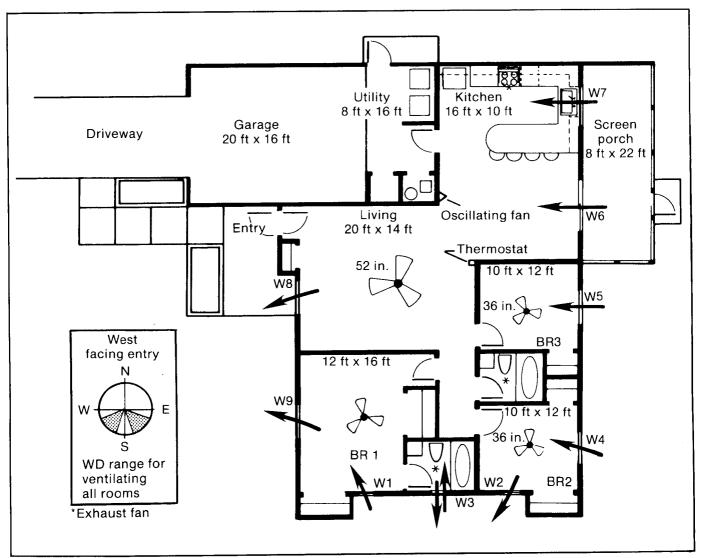


Figure 8.8. A House Plan for West-Facing Lots

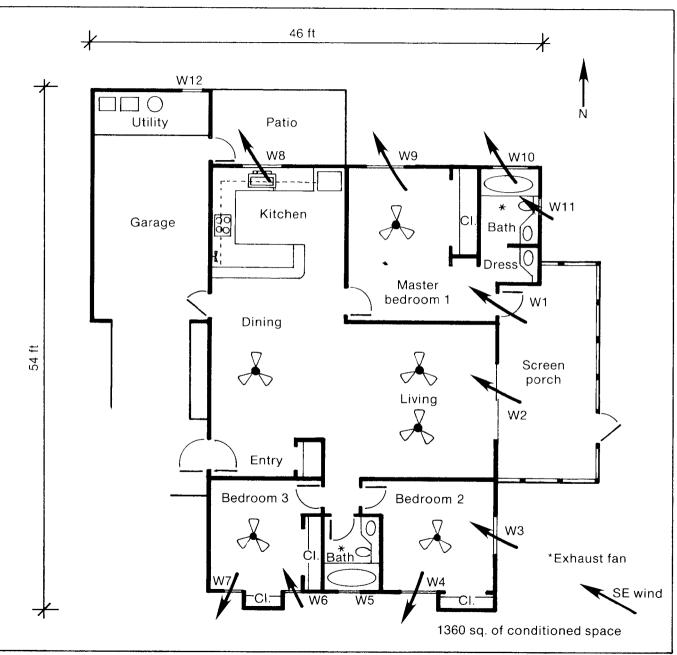


Figure 8.9. A Design for West-Facing Lots

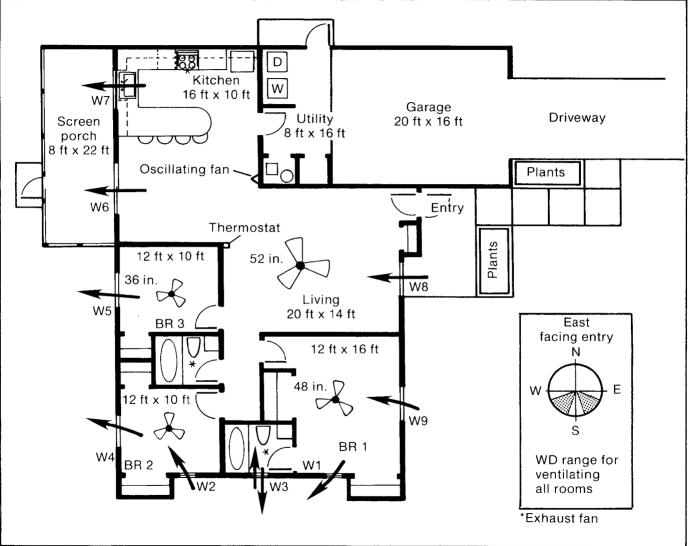


Figure 8.10. A House Plan for East-Facing Lots

Chapter 9 Whole-House Fans

Open windows sometimes may not provide adequate ventilation because of improper building orientation with regard to prevailing winds or dense housing. Moreover, open windows are not secure unless measures such as iron grillwork are used. In such cases, a whole-house fan (WHF) may be an attractive, if somewhat noisy, solution (Figure 9.1). A wholehouse fan can consume between 300 and 500 watts of electricity, depending on size.

A whole-house fan should be used for cooling as a substitute for natural ventilation. Although a wholehouse fan creates some air motion, it cannot be relied upon solely for occupant cooling. Ceiling fans and oscillating fans are recommended, even in a house with a whole-house fan. The whole-house fan pulls air in from all open windows and exhausts it through the ceiling and attic (Figure 9.1). It should be centrally located so that it draws in air from all around the house.

It is recommended that a whole-house fan be sized to provide 20 air changes per hour to the house. The cubic feet per minute (cfm) rating required is obtained by multiplying house volume (floor area square footage times ceiling height, in feet) by 0.33. Select a fan that has a cfm rating equal to or greater than that calculated. For example, a 1300 ft² home with an 8 ft ceiling has a volume of $1300 \times 8 = 10,400 \text{ ft}^3$. The cfm rating required is 0.33 x 10,400 = 3432. A 24-in.diameter WHF should usually be adequate. Note that this should be the cfm rating at 0.1-in. water static pressure (SP) drop and not the free-air cfm without any pressure drop. If the cfm rating does not state the pressure drop, then assume that it is for free-air. For fan selection, de-rate the free-air cfm by 20% to get the 0.1-in. SP rating.

It is not necessary to open windows all the way to ventilate with a whole-house fan. They can be opened 4-5 in. and fixed in a secure position by stops or window locks. Total open window area should be approximately twice the fan open area (a 20-in. blade diameter WHF has an open area of $3.14 \times 400/4 = 314$ in.²) if there is no insect screen over the window. If insect screening is used, then total open-window area should be three times the WHF open area.

Attic vents must be larger than normal for effective WHF ventilation. Free-exhaust area should again be approximately twice the WHF area. Two wind turbines in addition to soffit and gable vents should be sufficient, or a continuous ridge vent may be considered. For further details on whole-house fan installation and purchase, see Birch (1980).

An interesting WHF installation is suggested by John Belisle of Merritt Island, Florida. In his house, the WHF is installed backwards to pull air in from the attic and exhaust it through the windows; i.e., airflow direction is reverse that in Figure 9.1. The WHF cannot be run during the day because of the hot attic, but winds during the day are usually higher than those at night, so open windows generally provide adequate daytime ventilation.

At night, when the attic reaches the ambient temperature (by about 11 p.m. daylight time), the WHF is operated with only bedroom windows open, so it exhausts through these windows. This keeps small insects outside since they cannot enter the house. With a regular WHF installation or regular natural ventilation, these tiny insects (called "no see-ems" in Florida) come through ordinary window insect screening and make life miserable for the occupants. Apparently, they cannot get into the attic through the small openings in normal aluminum soffit vents widely used these days. Thus, the installation of the WHF backwards has considerable merit for those interested primarily in night-only ventilation. The attic-coupled ceiling fan described in Chapter 4 is another variation on this theme.

Figure 9.1. Airflow From a Whole House Fan (WHF)

References

ASHRAE. Handbook of Fundamentals. ASHRAE, Inc. Atlanta, GA, 1985.

ASHRAE. "Thermal Environmental Conditions for Human Occupancy." Standard 55-1981.

Aynsley, R.M.; Melbourne, W.; and Vickery, G.J. 1977. "Architectural Aerodynamics." Applied Science, London, p. 232.

Bahadori, M.N. February 1978. "Passive Cooling Systems in Iranian Architecture." *Scientific American.* Vol. 238, pp. 144-154.

Birch, T. July/August 1980. Back to the Fan. Rodale's New Shelter Magazine.

Chandra, S.; Fairey, P.; and Houston, M. December 1984. "Analysis of Residential Passive Design Techniques for the Florida Model Energy Code." FSEC-CR-113-84. Final report to the University of Central Florida.

Evans, B.H. 1979. "Energy Conservation with Natural Air Flow Through Windows." ASHRAE Transactions. Vol. 85, Part 2, pp. 641-650.

Evans, B.H. March 1957. "Natural Air Flow Around Buildings." Research Report No. 59. Texas Engineering Experiment Station. Texas A&M College System.

Fairey, P.; Kerestecioglu, A.; Vieira, R.; Swami, M.; and Chandra, S. May 1986. "Latent and Sensible Load Distributions in Conventional and Energy Efficient Residences." Final report to the Gas Research Institute, January 1983 - January 1986. Florida Solar Energy Center. GRI Report No. GRI-86/0056.

Fairey, P. 1986. "The Measured, Side-by-Side Performance of Attic Radiant Barrier Systems in Hot-Humid Climates." Florida Solar Energy Center. FSEC-PF-111-86. Fairey, P.W. and Bettencourt, W. November 1981. "La Sucka - A Wind Driven Ventilation Augmentation and Control Device." Proceedings International Passive and Hybrid Cooling Conference. Miami Beach, FL.

Fairey, P W. December 1982. "Effects of Infrared Radiation Barriers on the Effective Thermal Resistance of Building Envelopes." ASHRAE/DOE Conference on Thermal Performance of Exterior Envelopes of Buildings II. Las Vegas, NV.

Fanger, P.O. 1970. Thermal Comfort. McGraw Hill.

Gagge, A.P. and Nevins, Ralph G. September 1977. "Effect of Energy Conservation Guidelines on Comfort, Acceptability and Health, Thermal Analysis-Human Comfort-Indoor Environments." NBS Special Publication 492. U.S. Department of Commerce/ National Bureau of Standards, pp. 93-116.

Givoni, B. October 1982. "Basic Study of Ventilation Problems in Housing in Hot Countries." Report of Building Research Technion, Technion City.

Givoni, B. 1976. "Man, Climate and Architecture," 2nd ed. Applied Science. London.

Givoni, B. 1968. "Ventilation Problems in Hot Countries." Research Report. Building Research Station, Technion-Israel Institute of Technology.

Holleman, T.R. November 1951. "Air Flow Through Conventional Window Openings." Texas Engineering Experiment Station. Texas A&M Research Report No. 33.

McCluney, R. and Chandra, S. 1984. "Comparison of Window Shading Strategies for Heat Gain Prevention." Proc. 9th National Passive Solar Conference. ASES. Available from FSEC as FSEC-PF-67-84.

Sobin, H.J. 1983. Analysis of Wind Tunnel Data on Naturally Ventilated Models. Contact author at 6550 N. Skyway Road, Tuscon, AZ 85718.

Bibliography

Alberts, W. March 1982. "Modeling the Wind in the Town Planning Process." Energy and Buildings. Elsevier Publishers. Vol. 4. No. 1, pp. 71-76.

Arens, E. et al. 1984. "Predicting Thermal Comfort of People in Naturally Ventilated Buildings." ASHRAE Transactions, Part 1.

Arumi, F.N. 1979. "Computer-Aided Energy Designs for Buildings." Energy Conservation Through Building Design. Ed. Donald Watson. An Architectural Record Book. McGraw-Hill.

ASHRAE Handbook of Fundamentals. 1981. Ch. 14, "Air Flow in Buildings."

ASHRAE Journal. July 1983.

Aynsley, R.M. 1980. "Tropical Housing Comfort by Natural Airflow." Building Research and Practice. U.K. July/August, pp. 243-252.

Aynsley, R.M. 1979. "Wind Generated Natural Ventilation of Housing for Thermal Comfort in Hot Humid Climates." *Proc. Fifth International Wind Engineering Conference.* Pergamon Press, 1400 pp.

Baer, S. October 1981. "Cooling with Night Air." Zomeworks Corporation. Albuquerque, NM.

Baer, S. January/February 1980. "Cooling with Nighttime Air." Alternate Sources of Energy. Vol. 41, pp. 22-26.

Baer, S. 1980. "Concentrating Skylights, Insulation and Ventilation." Home Remedies - A Guidebook for Residential Retrofit. Ed. Tom Wilson. Mid-Atlantic Solar Energy Association. Philadelphia, PA.

Bahadori, M.N. 1981. "Pressure Coefficients to Evaluate Airflow Pattern in Wind Towers." Proceedings International Passive and Hybrid Cooling Conference. Miami Beach, FL. Nov. 10-13.

Barnaby, C.S.; Hall, D.H.; Dean E. October 1980. "Structural Mass Cooling in A Commercial Building Using Hollow Core Concrete Plank." Proceedings 5th National Passsive Solar Conference. Amherst, MA. pp. 747-751.

Battelle Memorial Institution. Pacific Northwest Lab Wind Energy Resource Atlas: Vols. 1 through 13. (Vols 1-12 are 12 regional atlases and Vol 13 is the summary volume). PNL-3195 WERA I-13. Box 999, Richland, WA 99352. Burton, D.R.; Robeson, K.A.; and Nevins, R.G. 1975. "The Effect of Temperature on Preferred Air Velocity for Sedentary Subjects Dressed in Shorts." *ASHRAE Transactions, Part 2*, pp. 157-168.

Caudill, W.W. July 1952. "Geometry of Classrooms as Related to Natural Lighting and Natural Ventilation." Texas Engineering Experiment Station. College Station, TX. Research Report No. 36.

Caudill, W.W.; Crites, S.E.; and Smith, E.G. Feburary 1951. "Some General Considerations in the Natural Ventilation of Buildings." Texas Engineering Experiment Station. College Station, TX. Research Report No. 22.

Cermak, J.E. 1976. "Aerodynamics of Buildings." Annual Review of Fluid Mechanics. Vol. 8, p. 75.

Cermak, J.E. March 1975. "Applications of Fluid Mechanics to Wind Engineering — A Freeman Scholar Lecture." *ASME Journal of Fluids Engineering*. Vol. 97, Ser. 1, No. 1, pp. 9-38.

Cermak, J.E.; Poreh, M.; Peterka, J.A.; Ayad, S.S. October 25-29, 1982. "Wind Tunnel Investigations of Natural Ventilation." ASCE convention and exhibit preprint 82-519, New Orleans, LA.

Chandra, S.; Ruberg, K.; Kerestecioglu, A. 1983. "Outdoor Testing of Small-Scale Naturally Ventilated Models." Building and Environment, Vol. 18, No. 1/2, pp. 45-53.

Chandra, S.; Houston, M.; Fairey, P.; Kerestecioglu, A.A. September 1983. "Wing Walls to Improve Natural Ventilation: Full Scale Results and Design Strategies." Proceedings Passive 83, 8th National Passive Conference. ASES. Glorieta, New Mexico.

Chandra, S.; Kerestecioglu, A.A. 1984. "Heat Transfer in Naturally Ventilated Rooms: Data from full-scale measurements." *ASHRAE Transactions.* Part 1, pp. 221-225. Also available from FSEC as FSEC-PF-45-83.

Chandra, S.; Fairey, P.; Houston, M. December 1984. "Analysis of Residential Passive Design Techniques for the Florida Model Energy Code." Final Report No. FSEC-CR-113-84.

Crowther, R.L. 1984. Affordable Passive Solar Homes: Low Cost Compact Designs. Sci Tech Publishing Co., Denver, CO. Crowther, R. 1980. "This Building is Loaded." Progressive Architecture. Vol. 4, pp. 150-155.

Cutri, A.G. 1980. "Hybrid Passive Cooling System for A New State Office Building." *Proceedings* 1980, *AS/ISES Annual Meeting*, Phoenix, AZ, pp. 898-902.

DeWalle, D. and Jacobs, B. "Windbreaks." School of Forest Resources. Pennsylvania State University.

Dick, J.B. June 1950. "The Fundamentals of Natural Ventilation of Houses." Journal, Institution of Heating and Ventilating Engineers. pp. 123-132.

Doran, J.C. et al. October 1, 1977. "Accuracy of Wind Power Estimates." Battelle Pacific Northwest Labs. Richland, WA. PNL-2442.

Egan, M.D. 1975. Concepts in Thermal Comfort. Prentice-Hall, Inc. p. 6.

Fairey, P.W. 1984. "Radiant Energy Transfer and Radiant Barrier Systems in Buildings." FSEC-DN-6-84. Available from FSEC.

Fairey, P. W. 1984. "Designing and Installing Radiant Barrier Systems in Buildings." FSEC-DN-7-84. Available from FSEC.

Fairey, P.W. December 1984. "Passive Cooling Gas Technology Characterization and Development." Report No. FSEC-CR-114-84.

FLOAD: A Building and Equipment Energy Use Analysis Program. 1984. FCHART Software. Middleton, WI.

Geiger, R. 1966. The Climate Near the Ground. Translated from the 4th German edition. Harvard University Press. Cambridge, MA.

Handa, K. 1979. "Wind Induced Natural Ventilation." Swedish Council of Building Research. Document D10. Stockholm, Sweden.

Kammerud, R.; Ceballos, E.; Curtis, B.; Place, W.; Andersson, B. 1984. "Ventilation Cooling of Residential Buildings." ASHRAE Transactions, Part 1.

Koenigsberger, O.H. et al. 1973. Manual of Tropical Housing and Building, Part 1: Climatic Design. Longman Group Ltd., London.

Kusuda, T. July 1980. "Review of Current Calculation Procedures for Building Energy Analysis." NBSIR 80-2068.

Kusuda, T. May 1981. "Savings in Electric Cooling Energy by the Use of A Whole-House Fan." NBS Technical Note 1138.

Lee, B.E.; Hussain, M.; Soliman, B. February 1980. "Predicting Natural Ventilation Forces Upon Low-Rise Buildings." ASHRAE Journal.

Los Alamos National Lab. August 1982. "Some Potential Benefits of Fundamental Research for the Passive Solar Heating and Cooling of Buildings." LA-9425-MS. McIntyre, D.A. 1978. "Preferred Air Speeds for Comfort in Warm Conditions." ASHRAE Transactions, Vol. 84 (2), pp. 264-277.

Milne, M. and Givoni, B. 1979. Architectural Design Based on Climate. Ch. 5, "Energy Conservation Through Building Design." Ed. Donald Watson. McGraw-Hill.

Newberry, C.W. and Eaton, K.J. 1974. Wind Loading Handbook. Building Research Establishment.

O'Hare, M. and Kronauer, R.E. July 1969. "Fence Designs to Keep Wind From Being A Nuisance." Architectural Record, pp. 151-156.

Olgyay, V. 1963. Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton University Press. Princeton, NJ.

Popular Science. October 1984. pp 112-115, 117.

"Principles of Natural Ventilation." Building Research Establishment Digest. February 1978, p. 210.

Reed, R.H. 1953. "Design for Natural Ventilation in Hot Humid Weather." Texas Engineering Experiment Station. Reprinted from Housing and Building in Hot-Humid and Hot-Dry Climates.

Schubert, R.P. and Kennedy, B. May 1981. "The Testing of Full Scale Ventilator Cap Types to Determine Their Effect on Natural Ventilation." *Proceedings of the 1981 Annual Meeting of AS/ISES*, pp. 901-905.

Sherman, M.H. and Grimsrud, D.T. March 1980. "Infiltration-Pressurization Correlation: Simplified Physical Modelling." Lawrence Berkeley Laboratory, LBL-10163.

Smith, E.G. June 1951. "The Feasibility of Using Models for Predetermining Natural Ventilation." Research Report No. 26. Texas Engineering Experiment Station. Texas A&M University.

Sobin, H.J. November 1981. "Window Design for Passive Ventilative Cooling: An Experimental Model-Scale Study." Proceedings 1981 International Passive/Hybrid Cooling Conference. Miami Beach, pp. 191-195.

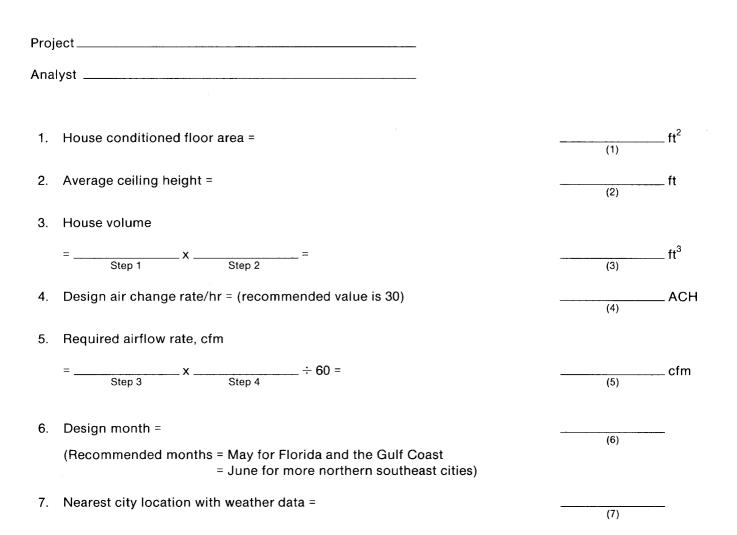
Soliman, B.F. and Frick, F.R. "Effect of Building Grouping on Wind Induced Natural Ventilation." University of Sheffield, England.

Sundaram, T.R.; Ludwig, G.R.; and Skinner, G.T. January 25-27, 1971. "Modelling of the Turbulence Structure of the Atmospheric Surface Layer." AIAA paper 71-136. AIAA 9th Aerospace Sciences Meeting. New York, NY.

Van Straaten, J.F; Roux, A.J.A.; and Richards, S.J. March 1955. "Comparison of the Thermal and Ventilation Conditions in Similar Houses Employing Different Ventilation Schemes." Bulletin No. 13. National Building Research Institute. South African Council for Scientific and Industrial Research. Van Straaten, J.F. 1967. Thermal Performance of Buildings. Elsevier Publishing Co. London, pp. 266-270.

Van Straaten, J.F. et al. 1965. "Ventilation and Thermal Considerations in School Building Design." National Building Research Institute. South African Council for Scientific and Industrial Research. Research Report No. 203, 1965, reprinted.

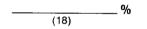
Vickery, B.J. "The Use of the Wind Tunnel in the Analysis of Naturally Ventilated Structures." Proceedings 1981 International Passive/Hybrid Cooling Conference. Miami Beach, FL, Nov. 1981. AS/ISES. Vickery, B.J.; Baddour, R.E.; and Karakatsanis, C.A. January 1983. "A Study of the External Wind Pressure Distributions and Induced Internal Ventilation Flow in Low-Rue Industrial and Domestic Structures." Boundary Layer Wind Tunnel Laboratory. University Western Ontario. Report. No. BLWT-552-1983.


Vieira, R.; Chandra, S.; and Fairey, P.W. September 24-26, 1984. "Residential Cooling Loads in Hot, Humid Climates." *Proc. 9th National Passive Solar Conference.* Columbus, OH. Available from FSEC as FSEC-PF-70-84.

White, R.F. 1954. "Effects of Landscape Development on the Natural Ventilation of Buildings and Their Adjacent Areas." Texas Engineering Experiment Station. College Station, TX. Research Report No. 45.

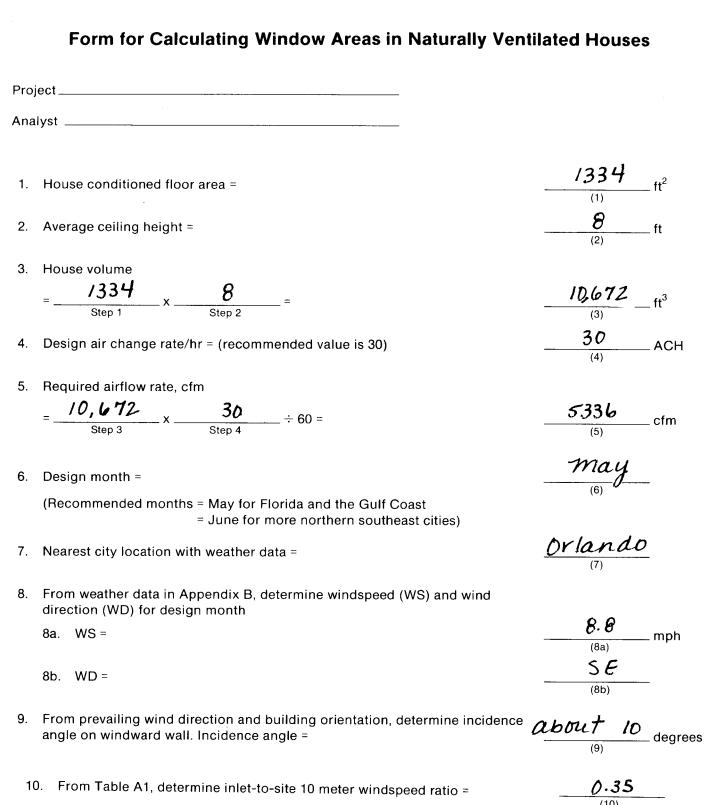
Appendix A Window Sizing Methodology

This appendix presents a tabular method for sizing windows in a house. It can be used to estimate the total operable window area required as a percentage of the house floor area. For a two-story house, the calculations should be done for each floor. This procedure assumes that the inlet and outlet areas are equal. Equal areas maximize the airflow, and this procedure can be safely used for slight differences; e.g., inlet = 40% of the total area. For widely different inlet and outlet areas, see a different procedure based on pressure coefficients (Chandra 1983). The procedure and accompanying tables follow. A sample calculation is presented at the end.

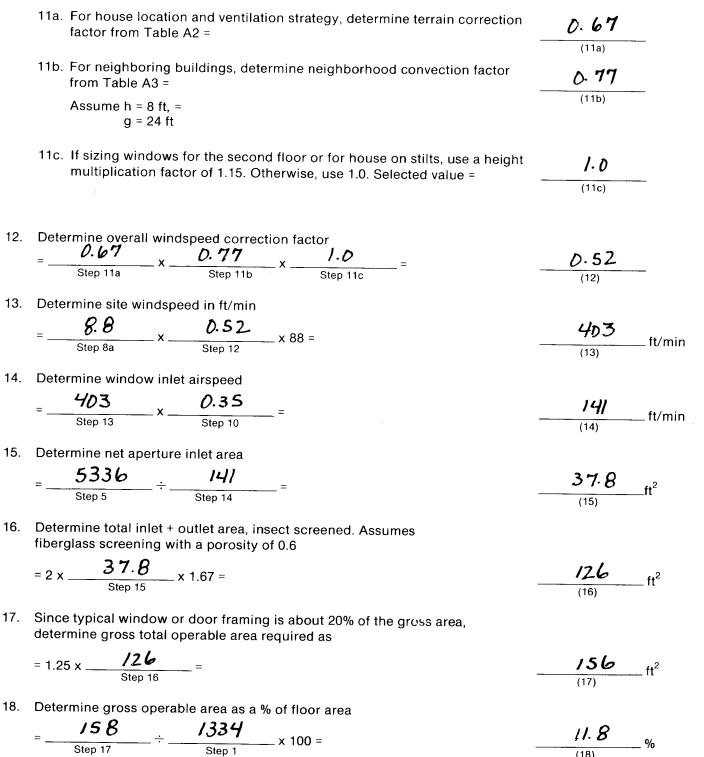

Form for Calculating Window Areas in Naturally Ventilated Houses

8.	From weather data in Appendix B, determine windspeed (WS) and wind direction (WD) for design month		
	8a. WS =	(8a)	mph
	8b. WD =	(8b)	
		(00)	
9.	From prevailing wind direction and building orientation, determine incidence angle on windward wall. Incidence angle =		degrees
	5	(9)	
10.	From Table A1, determine inlet-to-site 10 meter windspeed ratio =	(10)	
11.	Determine windspeed correction factors		
	11a. For house location and ventilation strategy, determine terrain correction factor from Table A2 =		
	and the first second state of the state of the second state of the state of the state of the state of the state	(11a)	
	11b. For neighboring buildings, determine neighborhood convection factor from Table A3 =		
	Assume h = 8 ft, = g = 24 ft	(11b)	
	11c. If sizing windows for the second floor or for house on stilts, use a height		
	multiplication factor of 1.15. Otherwise, use 1.0. Selected value =	(11c)	
12.	Determine overall windspeed correction factor		
	= X X =	(12)	
13.	Determine site windspeed in ft/min		
	= x x 88 =		ft/min
	= x x 88 =	(13)	
14.	Determine window inlet airspeed		
	= X =	(14)	ft/min
15.	Determine net aperture inlet area		
			ft ²
	= ÷ = =	(15)	
16.	Determine total inlet + outlet area, insect screened. Assumes fiberglass screening with a porosity of 0.6		
	= 2 x x 1.67 =	(16)	ft ²
	Step 15	(16)	
17.	Since typical window or door framing is about 20% of the gross area, determine gross total operable area required as		
	= 1.25 x = =	(17)	$ ft^2$
	Step to	(0)	

18. Determine gross operable area as a % of floor area



Note: This gross operable area requirement can be met the by same area of windows if the windows are 100% operable (awning, casement, hopper, etc.). The window area required will be twice this value if single-hung or sliding windows are used which have only 50% of the area as operable.


Sample Calculations

The first house plan discussed in Chapter 8 (Figure 8.3) is analyzed. Orlando weather data are used. The calculations follow.

10. From Table A1, determine inlet-to-site 10 meter windspeed ratio =

11. Determine windspeed correction factors

Note: This gross operable area requirement can be met the by same area of windows if the windows are 100% operable (awning, casement, hopper, etc.). The window area required will be twice this value if single-hung or sliding windows are used which have only 50% of the area as operable.

Table A1. Inlet-to-Site 10 Meter Windspeed Ratios (WSR)

Wind Incidence Angle, degrees	WSR
0 - 40	0.35
50	0.30
60	0.25
70	0.20
80	0.14
90	0.08

Notes:

- 1. Incidence angle is 0 when winds are perpendicular to a building face; i.e., when the wind is directly entering a window.
- 2. These results are a compilation of wind tunnel test data obtained by Vickery (1983). Vickery measured airflow through ventilated models and found that there was negligible change in airflow with wind incidence up to 40°. Although Vickery measured near zero airflow at 90°, it has been determined from full-scale testing that there is some ventilation even in leeward rooms. The ratio of best-to-worst airflow in a room was about 4:1. These field data and the Vickery data were combined to arrive at the Table 1 values.

Table A3. Neighborhood Correction Factor (NCF)

Wall height of typi buildings, h	ical upwind		= ft
Gap between prop adjacent upwind b		and	= fi
Ratio g/h			=
	Ratio g/h	NCF	-
	0	0.00	-
	1	0.41	
	2	0.63	
	3	0.77	
	4	0.85	
	5	0.93	
	6 or more	1.00	
			_

Note: These NCF values are obtained by extrapolating wind tunnel data obtained by Lee (1980)

Table A2. Terrain Correction Factor (TCF) for Wind Speed

Terrain Type	TCF 24-hr ventilation	Night-only ventilation
 Oceanfront or > 3 miles water in front 	1.30	0.98
 Airports, or flatlands with isolated-wall separated buildings (e.g., farm- house) 	1.00	0.75
3. Rural	0.85	0.64
4. Suburban or industrial	0.67	0.50
5. Center of large city	0.47	0.35

Notes:

- The TCFs for 24-hr ventilation are from standard civil engineering practice (e.g., Sherman 1982). These were developed for high-wind situations and may not be applicable for low windspeeds. In the absence of real data, the authors recommend using the suburban value for most housing calculations involving natural ventilation.
- 2. The night-only TCFs are 0.75 times the 24-hr value. This was arrived at by analyzing hourly windspeeds at night for Florida cities.

References to Appendix A

Chandra, S. September 1983. "A Design Procedure to Size Windows for Naturally Ventilated Rooms." Proceedings ASES 8th Annual Passive Conference. Glorieta, NM. Available from FSEC as FSEC-PF-46-83.

Lee, B.E.; Hussain, M.; and Soliman, B. February 1980. "Predicting Natural Ventilation Forces Upon Low-Rise Buildings." ASHRAE Journal.

Sherman, M.H. and Grimsrud, D.T. 1982. "Wind and Infiltration Interaction for Small Buildings." Proc. ASCE Annual Convention New Orleans, LA. Available as LBL-13949 from Lawrence Berkeley Labs, Bldg. 90, Berkeley, CA 94720.

Vickery, B.J. and Baddour, R.E. June 1983. "A Study of the External Pressure Distributions and Induced Internal Ventilation Flows in Low-Rise Industrial and Domestic Structures." University Western Ontario. Boundary Layer Wind Tunnel Laboratory Report No. BLWT-SS2-1983.

Appendix B Climatic Data for the Southern Gulf and Southeastern Atlantic Coast States

This Appendix contains long-term average climatic data for the southern Gulf and southeastern Atlantic coast states of the U.S. It is a compilation of National Weather Bureau data and has been extracted from the publication, "Local Climatological Data: Annual Summary with Comparative Data," available for about 300 cities from: Publications, National Climatic Data Center, Federal Building, Asheville, North Carolina 28801; phone (704) 259-0682. Data have been presented for 49 humid cities in the states of Alabama, Florida, Georgia, Louisiana, North Carolina, South Carolina, and Texas. For this document, the specific data needed are the monthly average windspeed and wind direction to perform Appendix A calculations. For most cities, wind data have been collected at airport locations and Appendix A, Table 2 correction factors must be used to estimate local windspeeds at the homesite.

Birmingham, Alabama Municipal Airport

			Tempera	atures	۴			Norr						Precip	tation in	inches						Relat midit		t.			Wind			line	ts,
		Normai	·		Extr	mes		Degree Base 6	sdays 35°F			Water	equivale	int			s	now, Ic	e pellets		5	5	5	5		thru 1963	Fast	test n	nile	le sunshine	er, tenths, set
Month	Daily maximum #	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year		D6 ocal		I	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cove sunrise to sum
(a)				40		40	+				40		40		34		40		34		20	20	20	20	40	15	34	34		34	34
JFMAM	52.7 57.3 65.2 75.2 81.6	33.0 35.2 42.1 50.4 58.3	42.9 46.3 53.7 62.8 70.0	83 89 90 99	1949 1962 1982 1955 1952	3 11 26 35	1966 1958 198D 1973 1944	685 532 368 110 36	D 8 18 44 191	4.72 6.62 5.00 4.53	11.00 17.67 15.80 13.75 11.10	1961 1980 1979 1969	1.09 1.20 1.79 1.35 1.15	1968 1967 1967 1951	5.81 6.57 7.05 5.03 4.63	1961 1970 1966 1969	2.3 1.5 T 0.0	1960 1983 1971	2.3 0.7 T 0.0		71 73 77 84	78 79 83 86	55 54 52 56	56 53 52 58	8.9 9.3 8.5 6.8	N S S S	49 59 65 56 65	SE SW SW NW	1975 1960 1955 1956 1956	50 55 63 66	6.9 6.5 6.5 5.8 5.9
ZONNC	87.9 90.3 89.7 84.6 74.8 63.7	65.9 69.8 69.1 63.6 50.4 40.5	77.0 80.1 79.5 74.1 62.6 52.1	106 103 100 94 84	1980 1947 1980 1954 1954	51 51 37 27 5	1966 1967 1946 1967 1956 1950	0 0 7 137 387	360 468 450 280 62 0	3.85 4.34 2.64 3.64	15.25	1950 1967 1977 1977 1948	0.82 T 0.11 0.42	1983 1955 1955 1963 1949	3.85 4.39 5.13 5.03 3.75 4.87	1968 1952 1977 1977 1948		1955 1950	1.4	1955 1950	85 86 85 83 80	84	61 60 55 57	65 66 69 70 68	5.4 6.4 6.2 7.4	SSW NE ENE ENE N	56 57 50 43 52	SW NW SE W N	1957 1960 1956 1951 1955 1944	59 63 61 66 55	5.9 6.4 5.8 5.6 4.6 5.7
0 YR	55.9 73.2	35.2 51.1	45.6		1951 JUL 1980		1962 JAN 1966	601 2863	D 1891	4.95 54.52	13.98 17.67	1961 FEB 1961	0.81 T	1980 SEP 1955	5.29	HAR		1963 DEC 1963		1963 DEC 1963							•1 65	SE SW	1954 MAR 1955		6.5

Huntsville, Alabama Huntsville-Madison County

			Temper	atures	°F			Nor						Precip	itation ir	inches						Rela midit		r.			Wind			je	ž
		Normal	r		Extr	emes	1	Base	e days 65 °F			Wate	equival	mt			s	now, lo	e pellet	5	Hour	Hour	Hour	Hour		thru 1963	Fas	test n	nile	ole sunahine	cover, tenths, sunset
Month	. Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	¥#	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00		12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possit	Mean sky cor sunrise to sur
(a)				16		16					16		16		16		16		16		16	16	16	16	16	1	16	16			16
JFM	49.4 53.9 61.9 73.0	31.0 33.2 40.6 50.0	40.2 43.6 51.3 61.5	77	1972 1982 1982 1982	6 6	1982 1981 1980 1983	769 606 441 136	0 7 16	4.79 6.78	9.57		0.59	1982	4.90 3.86 7.70	1971 1973	4.3 2.8 2.1		1.8	1975 1980 1968 1973	74 74	80 61	59 57	61 58	9.4 9.6 10.2		84 43 46	26 12	1978 1976 1969		7.0 6.6 6.8
ĥ	79.9 86.8	57.6 65.3	68.8	92	1971 1970 1969	36	1983 1971 1972	136 41 D	31 159 333		11.88	1982 1983 1976	1.84 3.06 0.77	1970	3.85 5.90 4.46	1983	0.0	1973	0.0		83	81 86 87	57	60	9.2 7.8 7.0		44 37 38	31	1970 1974 1974		6.0 6.1 5.6
J A S	89.4 89.2 83.5	69.1 67.9 62.0	79.3 78.6 72.8	102 96	1983 1978	55 40	1972 1976 1981	0 0 12	443 422 246	5.05 3.11 3.99	4.37 9.78	1981 1980	0.93	1982	4.47 2.49 3.99	1980 1980	0.0		0.0		86 87	88 89 90	58 60	66 69	6.2 5.8 6.6		43 40 43	32 23	1969 1974 1968		5.9 5.4 5.9
D D	73.4 61.6 53.0	49.1 39.4 33.6	61.3 50.5 43.3	93	1982 1982 1978	15	1982 1976 1983	166 435 673	51 0 0	4.24	12.06 11.53 11.74		0.77 1.82 0.91	1971	6.04 3.33 5.81	1973	0.0 0.8 1.0	1974 1974	0.8	1974 1974	79	86 83 80	58	65	7.6 8.5 9.6		32 35 39	13	1972 1980 1976		5.1 6.0 6.6
YR	71.2	49.9	60.6		AUG 1983	-4	JAN 1982	3279	1708	54.74	17.00	MAR 1980	0.55	SEP 1982	7.70	MAR 1973	۰.3	JAN 1982	3.6	JAN 1975	80	84	58	63	8.1		46	12	MAR 1969		6.1

Mobile, Alabama Bates Field

			Temper	itures	°F			Nor						Precip	itation in	inches					hu	Rela midit		n.			Wind			hine	4
		Normal			Extr	ernes		Base	e days 65 °F			Wate	r equivati	ent'			s	now, Ic	* pellet		Hour	Hour	Hour	Hour		thru 1963	Fast	test n	nile	5	cover, tenths, surrent
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00	Т 06 .0Cal	12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	8	Mean sky cov sunrise to sur
(a)				42		42					42		42		42		42		42		21	21	21	21	35	14	25	25			35
J F M	60.6 63.9 70.3	40.9 43.2 49.8	50.8 53.6 60.1	82 90	1949 1981 1946	11	1982 1951 1943	469 342 191	29 23 39	4.91	10.40 11.89 15.58	1983	0.98 1.31 0.59	1948	8.34 5.37 6.52	1981	3.6	1955 1973 1954	3.6	1955 1973 1954	76	80	55	62	10.7	N I	44 46 40	23	1959 1960 1962		6.6 6.2 6.2
A H J	78.3 84.9 90.2	57.7 64.8 70.8	68.0 74.9 80.5	100	1943 1953 1952	43	1973 1960 1966	43 0 0	133 307 465	5.35 5.46	17.69 15.08 13.07	1955 1980	0.48	1954	13.36	1955	0.0	•	0.0		82 83	87 86 86	53 54	62 62	10.4 8.9 7.7	S S	44 51	01 32	1964 1963 1959		5.8
L A Z	91.2 90.7 87.0	73.2 72.9 69.3	82.2 81.8 78.2	132	1952 1968 1980	59	1947 1956 1967	0	533 521 396	6.75	19.29 12.05 13.61	1969		1983 1972 1963	5.34 6.62 8.55	1969	0.0 0.0 0.0		0.0 0.0		86 87	88 9D 88	60 61		6.9 6.7 7.9	NE	46 63	18 14	1960 1969		6.6 6.0
0 N	79.4 69.3	57.5	68.5 58.6	93	1963 1971	32	1957 1950	50 218	158 26	2.62	6.72	1975	т	1978	4.30		0,0	1966	0.0	1966	82	85	52	66	8.2	N	63 46	36	1979 1964		5.8
D	63.1	42.9	53.1		1974		1983	382	13		11.38		1.29	1980	5.50		3.0	1963	3.0	1963	79	83	61	70	9.3 10.1		37 38		1959 1959		5.3
YR	77.4	57.6	67.5		JUL 1952		JAN 1982	1695	2643	64.64		JUL 1949	т	0CT 1978	13.36	APR 1955		FEB 1973	3.6	FEB 1973	82	85	57	67	9.0	N	63		SEP 1979		5.9

Montgomery, Alabama Dannelly Field

			Temper	atures	°F			Non						Precip	itation ir	inches					hu	Rela Imidi		ct.			Wind			2	
		Normal	,		Extr	emes		Base (e days 65 °F			Wate	r equivak	ent			s	now, la	e pellet	5	Hour	Hour	Hour	Hour		thru 1963	Fas	test n	nite	uble sunsh	er, tanths, set,
Month	Daily maximum	Daily minimum	Monthiy	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Meximum in 24 hrs.	Year	Maximum monthiy	Year	Maximum in 24 hrs.	Year	00	년 106 Local	12	18	Meen speed m.p.h.	Prevailing direction	Speed M.p.h.	Direction	Year	. of pos	Mean sky cove sunrise to sum
(a)				39		39	ſ				39		39		39		39		39		20	20	20	20	39	19	39	39		33	39
JFHAH	57.0 60.9 68.1 77.0 83.6	36.4 38.8 45.5 53.3 61.1	46.7 49.9 56.8 65.2 72.4	85 89 91	1949 1962 1954 1972 1953	10 19 31	1982 1951 1980 1950 1971	580 439 284 72 10	13 17 30 78 240	5.92 4.38	7.58 13.38 10.83 15.64 12.01	1961 1958 1964	2.00	1947 1967	4.73 5.95 7.12 4.59 6.36	1982 1958 1957	3.1 T 0.0	1977 1973 1983	3.1 T 0.0	1977 1973 1983	72 74 77	79 82 85	55 54 52	57 55 56	7.9 8.4 8.5 7.4	S NH S	72 45 60 54	SW SE	1975 1981 1952 1952	54 58 65	6.6 6.2 5.6
Ĵ	89.8	68.4	79.1				1956	Ő	423	3.45	9.89		0.33		6.99		0.0 0.0		0.0 0.0			87 87			6.2 5.9		51 51		1978 1953		5.7
J ▲ S	91.5 91.2 86.9 77.5	71.8 71.1 66.4 53.1	81.7 81.2 76.7 65.3	104	1983 1980	57 39	1947 1968 1967 1952	0 0 0 86	518 502 351 95		8.92 10.42 10.62 9.06	1974 1953	0.44	1958	4.52 5.03 8.81 4.25	1961 1953	0.0 0.0 0.0		0.0		87 85	90	60 57	66 68 67	5.8	ENE	42	SH NH	1954 1951 1978	65 62	6.2 5.6 5.5
Ň	67.0 59.8	43.0 37.9	55.0 48.9	87	1975 1982	13	1950 1983	307 499	7		21.32	1948	0.32	1949	8.17	1948	T	1971 1963	T	1971 1963	81	86	55	66	5.7 6.6 7.3	NW	40 46 46	5	1955 1957 1956	56	4.6
YR	75.9	53.9	64.9		JUN 1954		JAN 1982	2277	2274	49.16	21.32	NOV 1948	0.01	0CT 1978	8.81	SEP 1953		JAN 1977	3-1	FEB 1973	a 0	85	56	62	6.7	s	72	W	JAN 1975	59	5.8

Apalachicola, Florida Municipal Airport

			Tempera	tures	°F			Norr						Precip	itation in	inches						Rela midit		rt.			Wind			ain	£,
		Normal			Extre	mes		Degree Base 6			_	Water	equivale	nt			S	now, Ic	e pellet	5	Hour	Hour	Hour	Hour		thru 1951	Fas	test n	nile		ier, tenths, iset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	Ĕ 07 _ocal	13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cov sunrise to sur
a)	-			54		54					54		54		54		54		54		29	33	29	33	39	22	47	47		48	50
J	60.5	45.1	52.8	79	1957	14	1966	401	23	3.51	8.25	1964	0.04	1957	3.77	1935		1977		1977					8.3		48		1960		5.7
F	62.4	46.9	54.7		1957	21	1951	311	23	3.64	9.19			1938	3.74		1.2	1958		1958		86		77	8.7		42		1969		5.5
н [68.0	53.4	60.7	B5	1982	22	1980	168	35	4.04	14.33	1959	0.71		8.17			1980		1980					9.0		54		1931		5.7
A	75.1	60.7	67.9	90	1967	37	1977	30	117		12.14		0.09		7.76		0.0		0.0			86		74	8.6		51		1933		4.8
нł	81.7	67.3	74.5	96	1953	47	1981	۵.	295	2.94	8.70	1974	0.25	1983	7.07	1959	0.0		0.0			84			7.7		47		1937		4.6
J	86.6	72.9	79.8	101	1930	56	1977	D	444	4.81	18.32	1965	0.30	1977	5.34	1949	0.0		0.0		86	85	67	74	7.2	S₩	55	E	1972	72	5.2
.	88.0	75.0	81.5	102	1932	63	1981	c	512	7.09	17.95	1975	0.75	1976	6.75	1975	0.0		0.0					76			63		1930		6.1
A	88.0	74.7	81.4	99	1956	66	1968	0	508	7.53	21.08	1970	1.85		5.67		0.0		0.0			88			6.5		59	NE	1939	63	5-9
s	85.3	72.3	78.9		1932		1967	0	417		22.55				11.71		0.0		0.0		86	88	70	78	7.9		67		1947		5.6
0	78.2	62.1	70.2		1941		1977	24	185			1959		1935	6.32		0.0		0.0			86			8.0		56		1941		4.0
N	69.2	52.7	61.0		1935		1950	154	34	2.82		1947		1931	5.84		0.0	1050	0,0	1.05.	83	85	63	11	8.0		47	SE	1948		4.5
D	63.0	47.0	55.0	82	1931	13	1962	32 D	10	3.50	7.87	1953	0.30	1955	4.15	1931	T	1952	,	1952	84	86	68	78	8.0	N	42	SE	1945	57	5.7
			ĺ		JUL		DEC					SEP		ост		SEP		FEB		FEB									SEP		
R	75.5	60.8	66.2	102	1932	13	1962	1408	2603	54.98	22.55	1946	0.01	1935	11.71	1932	1.2	1958	1.2	1958	85	86	67	76	7.9	N	67	Ε	1947	67	5.3

Daytona Beach, Florida Regional Airport

			Tempera	itures	°F			Norr						Precipi	itation in	inches					hu	Rela midit		ct,			Wind			ei e	ŧ,
Ī		Normal			Extr	mes		Degree Base f	5 °F			Water	equivale	mt			s	now, Ic	e pellet	5	Hour	Hour	Hour	Hour		thru 1963	Fast	test n	nile		cover, tenths, sunset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01		13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cov sunrise to sur
(a)				40		40					40		40		40		40		40		39	39	39	39	38	18	35	35		i	35
J F	68.4 69.3	47.4 48.2	57.9 58.8	88	1957 1962	24	1981 1958	264 214	44	2.37	7.10	1960	0.15	1944	3.64	1971	T T 0.0	1977 1951		1 977 1 951	83	86	57	72		NNW	43 44 44	20	1978 1960 1957		5.8 5.7 5.7
Å	74.6 80.0 84.8 87.8	53.6 59.1 65.3 70.5	64.1 69.6 75.1 79.2	96 100		35	1980 1950 1971 1975	116 14 0	88 152 313 426		7.75 7.12 12.33 15.19	1949 1976	0.25 T 0.08 1.03	1967	4.03 4.22 6.28	1982 1947	0.0		0.0		83 85	85 85	54 57	69 71 76	9.8	E	46 40 40	18 25	1953 1961 1965		5.1
L J	87.8 89.6 89.0	72.5		132		60	1975 1981 1957	0	499	5.52	13.19 14.58 19.89	1944	1.07		3.90	1967	0.0		0.0		1	88	65	78 80		SSW		25	1963 1949		6.3
S O	86.9 81.2 74.8	72.1	79.5 73.2 65.2	99 95	1944 1959 1948	52 41	1956 1954 1950	0 0 83	435 259 89	6.68 4.62	15.20	1979 1950	D.42 0.19	1972	6.34 9.29 5.83	1964 1953	0.0		0.0		88 85 85	86	63	80 77 78	8.5 9.3 8.7	NE	58 53 37	05	1960 1950 1963		6.4 5.7 5.2
D	69.8	49.2	65.2 59.5		1978	19	1983	209	39		11.98	1983	0.06	1956	5.22	1983	Ť	1962	Ť	1 962					8.8		40	34	1954		5.8
YR	79.7	60.9	70.3	172	JUL 1981		DEC 1983	900	2878	48.46	19.89	AUG 1953	т	NOV 1967	9.29	0CT 1953	Ţ	JAN 1977	т	JAN 1977	86	87	61	76	8.8	E	58	11	SEP 1960		5.8

Fort Myers, Florida Page Field

			Tempera	iturini	۴F			Norr						Precip	itation in	inches						Relat nidit		t			Wind			sunshine	tenths,
		Normal			Extr			Degrei Base (1 Curys 35°F			Water	equivale	mt			Sr	now, la	ce pellets	1	Hour	Hour	Hour	Hour		thru 1963	Fast	test m	ile		cover, ten sunset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normel	Meximum monthly	Year	Minimum monthly		Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01		13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky con sunrise to sur
(a)				44		44					44		44		44		44				22	22	22	22	37	10	34	34			35
1	74.3	52.5	63.4	88	1982	28	1981	150	100	1.89	7.45	1979	0.00	1950	2.63	1983	0.0		0.0		85	88	57	73	8.5	E	40	25	1958	l l	5.0
Ē	75.1	53.1	64.1		1962		1956	120	94		10.82	1983	T	1944	2.60	1969	0.0		0.0		84	88	55	70	9.1		39	25	1958	1	4.9
нI	79.8	57.8	68.8	93	1980	33	1980	39	156	2.85	18.58	1970	0.03	1974	7.92	1970	0.0		0.0		84			67	9.4		46		1970	1	4.9
	84.5	61.7	73.1		1946	39	1950	0	243	1.52	7.66	1941	T	1970	3.82		0.0		0.0		84			64	9.0		39		1958	1	4.6
M I	88.7	67.0			1953		1945	0	400			1968	0.34		5.33		0.0		0.0			88			8.2		40		1965		5.0
J	90.1	72.0	81.1	103	1981	61	1955	0	483	8.72	20.10	1974	1.99	1980	6.67	1959	0.0		0.0		88	88	59	74	7.4	E	46	12	1966		6.1
	91.0	74.1	82.6	101	1942	66	1950	٥	546	8.57	15.28	1941	2.28	1964	4.06	1965	0.0		0.0		88	88	60	75	6.8	ESE	45		1952		6.4
Â	91.2	74.4			1942		1957	D	552	8.58	16.73	1981	3.98	1963	6.73	1967	0.0		0.0		88	89	61	78	6.8		39		1957		6.4
s	89.6	73.8	81.7		1980		1956	0	501		16.60			1972	9.34		0.0		0.0		88	90	62	77	7.7		92		1960		6.3
0	85.2	67.7	76.5	94	1941		1957	0	357		12.04		0.05		D.85		0.0		0.0			89			8.5		45		1953		5.1
N	80.0	59.5	69.8	91	1979		1970	25	169	1.35		1972	1	1944	3.34		0.0		0.0		67	89	56	74	8.3		31		1963		4.7
٥	75.6	53.7	64.7	90	1978	26	1962	107	98	1.57	5.42	1940	0.10	1956	3.00	1969	0.0		0.0		87	89	57	75	8,2	NE	35	33	1967		••9
					JUN		DEC					JUN	i i	UAN		ост												1	SEP		
RR .	83.8	63.9	73.9	103	1981		1962	441	3699	53.64	20.10	1974	0.00	1950	10.85	1951	0.0		0.0	1	86	89	56	72	8.2	E	92	05	1960	1	5.4

Jacksonville, Florida International Airport

			Tempera	itures	°F			Norr						Precip	itation in	inches						Rela		rt.			Wind			bine.	ž
		41.7 53.2 85 1947 43.3 55.1 98 1962 49.3 61.3 91 1974						Base 6	e days 35 °F			Water	equival	nt			s	now, Ic	e pellet	3	Hour	Hour	Hour	Hour		thru 1963	Fast	est n	nile	50	cover, tenths, sunset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Meximum in 24 hrs.	Yber	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	분 07 Local	13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cov sunrise to sur
(a)				42		42					42		42		42		42		42		47	47	47	47	34	14	30	30		32	34
ار	64.6	41.7	53.2	85	1947	13	1981	396	30	3.07	7.29	1968	0.06	1950	3.02	1963	т	1982	T	1982	84	87	57	74	8.4	NW	+1	NW	1971	58	6.0
F	66.8	43.3	55.1	58	1962	19	1943	302	25	3.48	8.85			1962	6.22		1.5	1958	1.5	1958	82	85	53	68	9.4	USU	52	NE	1963	61	5.8
M	73.3	49.3	61.3			23	1980	166	51		10.18			1945	7.12		T	198n	Т	1980	82	86	50	65	9.2	NH	44		1971		5.8
A	79.7	55.7					1975	21	102		11.61			1942	8.25		0.0	-	0.0		84			65	8.9	SE	48	- ¥	1973	72	5.2
- н	85.2	63.0	74.1				1973	0	282		10.43			1953	5.40		0+0		0.0	ł	85	85					62		1975		5.5
J	88.9	69.1	79.0			55	1981	ō	420		12.90				5.93		0.0		0.0			87				SW	76		1967		6.1
J	90.7	71.8	81.3	105	1942	61	1972	o	505	6.54	16.21	1960	1.97	1977	10.09	1966	0.0		0.0		88	88	58	75	7.3	SW	49	S₩	1950	61	6.3
A	90.2	71.8	81.0	172	1954	64	1950	0	496	7.15	16.24	1968	1.92	1942	7.93	1968	0.0		0.0		90	91	60	78	7.0	SW	52	NE	1969	60	6.2
\$	86.9	69.4	78.2				1981	0	396			1949			10.17	1950	0.0		0.0		90	91	62	80			82		1964		6.5
0	79.7	59.2	69.5	96	1951	36	1977	21	160	3.41	13.44	1956	0.16	1942	6.66	1956	0.0		0.0		89	91	58	79	8.3	NE	72	÷.	1950	57	5.5
N	72.4	49.2	60.8		1961		1970	164	36	1.94	7.85	1947	Т	1970	5.44	1969	0.0		0.0		\$7	89	56	78	8.0		60		1950		5.2
0	66.3	43+2	54.8	84	1981	11	1983	332	15	2.59	7.09	1945	0.04	1956	3.75	1983	Т	1962	1	1962	86	88	58	78	8.1	NW	62	N	1963	56	6.0
					JUL		DEC					SEP		NOV		SEP		FEB		FEB									SEP		1
YR	78.7	57.2	68.0	135	1942	11	1983	1402	2520	52.77	19.36	1949	Т	1970	40.17	1950	1.5	1958	1.5	1958	86	88	56	73	8.2	NW	82	N	1964	62	5.8

Key West, Florida International Airport

			Temper	atures	°F			Nor		· · · · · · · · · · · · · · · · · · ·											hu	Rela midi		ct.			Wind			hine	
		Normal			Extr	emes		Base (e days 85 °F			Wate	r equival	mt			s	now, le	ce pellet	•	Hour	5	5	5		thru 1963		støst r	nile	l 🖫	18
Month	Daily meximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Meximum in 24 hrs.	Yar	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	D7		19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover,
•)				31		31					35	1	35		35		35		35	_	32	35	35	35	30	3	7	7	-	24	•
J F M	71.8 74.8 78.6 82.0	65.6 65.3 69.5 73.4	68.7 70.1 74.1 77.7	85	1960 1982 1977 1965	47	1981 1958 1980 1950	49 37 6 0	164 180 288 381	1.92	4.46	1983 1965 1983 1948	0.02 T	1948	3.10	1966	0.0 0.0 0.0		0.0 0.0 0.0		78 78	81 79	67 66	75 73	12.1 12.3 12.5	SE SE	38 39 46	12 26	1979 1983 1980	76	35 64 24
	84.9 87.3	76.2 78.5	80.6 82.9	91 94	1953 1952	66 68	1960 1961	0 0	484	3.22	12.90	1960	0.00 0.12 0.90	1945	3.64 8.89 6.17	1960	0.0		0.0 0.0 0.0		77	77	65	71 72 73	12.7 10.9 9.8	ESE	58 32 35	32		80	05
	88.9 88.9 86.5 84.4	80.0 79.6 78.6 75.8	84.5 84.3 82.6 80.1	95 94	1951 1957 1951 1962	68 70	1952 1952 1960 1957	0 0 0	605 598 528 468	4.80 6.50	11.69 11.34 18.45 21.57	1945	0.54 2.25 1.70 0.74	1969 1951	3.05 3.90 6.65	1977 1963	0.0		0.0 0.0 0.0		78 80	78 81	67 70		9.5 10.0		35 38	19 13	1980 1981 1981	75	76 56 06
	79.6 75.2	71.4	75.5	86	1964 1978	49	1959 1983	0 22	315 208		27.67	1980 1983	0.13	1961	8.47 23.28 4.60	1980	0.0 0.0 0.0		0.0 0.0 0.0		80	83	69	76	11.2 12.0 12.1	ENE	35 37 39	36		70	0 5 0 5 1 5
R	81.9	73.4	77.7		AUG 1957	*1	JAN 1981	114	4756	39.42	27.67	NOV 1980	0.00	APR 1959	23.28	NOV 1980	0.0		0.0		79	80	68	74	11.2	ESE	58	01	APR 1980	7:	5 5

Lakeland, Florida Florida Citrus Mutual Bldg.

			Temper	atures	•F			Nor	mat e days					Precip	itation in	inches						Relat midit		.			Wind			Ĕ	Į
		Normal			Extre	mes		Base				Water	equivale	ent			s	inow, le	a pellet	8	Hour	Hour	Hour	Hour	\$		Fa	stest n	nlle	ie suns	cover tenths
	Daily meximum	Daily munimum	Monthly	Record highest	Year	Record	¥ee	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hm	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year		⊥ .ocal			Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky rov
T				37		37					37		37		37		37		37						12	16			-	24	•
	70.5	51,0 52.2 56,3	60.3	91	1947 1962 1977	28	1977 1970 1943	188 170 83	58 89 123		6.59		0,17	1950 1945 1949	3.92	1945 1971 1960	1.0 0.0	1977 1951	0.0	1977 1951					7.3 7.8 7.8	NE W				62 65	
	81.8 85.8 89.7	62.1 67.1 71.3	72.0 77.0 80.3	99	1968 1945 1977	54	1950 1971 1949	9 0 0	219 372 465	2.57 3.44 6.70		1959 1957 1958	0.13	1967 1953 1948			0.0		0.0						7.7 6.9 6.2	Ē				74	
	90.4 90.4 88.0	72.7 73.3 72.3	81.9 80.2	98	1961	63	1947 1957 1957	000	515 524 456	7.18	15.67 15.57 11.68	1948	3.40	1961 1942 1972	6.20	1960 1949 1960	0.0		0.0						6.6	NE NE				61 61 59	
	82.4 76.0 71.5	66.1 57.5 52.5	74,3 65,8 62,0	89	1959 1946 1977	28	1957 1970 1962	0 72 196	288 126 63	2,84 1,60 2,09	5.94	1952 1941 1941	Ť	1974 1960 1944	3.97	1963	0.0 0.0 0.0		0.0						7.2 6.9 6.9	NE				65 66 63	5
		62.9	72.1	101	JUL 1942	20	0EC 1952	678	3298	49.43	15.67	JUL	0.00	APR	10.12	JUN	1.0	JAN 1977	1.0	JAN 1977					6.9	NE				65	

Miami, Florida International Airport

			Tempera	rtures	°F			Normal Precipitation in inches										Rela midi	tiva ty po	t.			Wind			ž	ž				
		Normal			Extr	HT185		Base				Wate	r equivale	nt			Si	now, la	ce pellet	•	Hour	Hour	Hour	Hour		thru 1963	Fast	tent m	nile	sible suna	er, tenths,
Month	Daily meximum	Daily minimum	Monthly	Record highest	¥ 8 .	Record	Year	Hesting	Cooling	Normał	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Yee	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	07		19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possit	Mean sky co
•)				+1		41					41		41	1	41		41		•1		19	19	19	19	34	15	26	26		7	3
J	75.0	59.2	67.1		1982		1977	76	141	2.08	6.66	1969	0.04	1951	2.68	1973	0.0		0.0					69			46		1978		5.
F	75.8	59.7	67.8		1982		1997	62	140	2.05		1983		1944	5.73		0.0		0.0						10.1		41	25	1983		5.
M	79.3	64.1	71.7		1977		1980	14	222	1.89	7.22		0.02		7.07		0.0		0.0						10.5		46		1966		5.
^	82.4	68.2	75.3		1971		1971	0	309		17.29				16.21		0.0		0.0					70	10.6		33 52		1980 1980		5.
<u>.</u> I	85.1	71.9	78.5		1956		1945	0	419		16.54				11.59		0.0		0.0					75			37		1967		6.
1	87.3	74.6	81.0	98	1.444	0.0	1951	Û	480	9.15	22.36	H 96B	1.81	2945	8.20	1977	0.0		0.0		87	80		13	0.1	32		1.1	1701	1	
١L	88.7	76.2	82.4	98	1983	69	1950	0	539	5.98	13.51	1947	1.77	1963	4.55	1952	0.0		0.0		82	85	63	72	7.9	SE	38	18	1962	80	6.
À I	89.2	76.5	82.8		1954		1950	ō	552		16.88		1.65		6.92		0+0		0.0					74	7.8		74	36	1964	76	6.
s	87.8	75.7	81.8	95	1954		1983	0	504		24.40		2.63		7.58		0.0		0.0					77		ESE			1965		6.
0	84.2	71.6	77.9		1980		1943	0	400		21.08		1.25		9.95		0.0		0.0					73	9.2		41		1966		6.
N	79.8	65.8	72.8		1958		1950	5	239	2.71	13.15	1959		1970	7.93		0.0		0.0					71	9.5		32		1981		5.
미	76.2	60.8	68.5	87	1978	33	1983	42	150	1.86	6.39	1958	D.13	1968	4.38	1964	0.0		0.0		79	83	59	70	9.2	N	38	32	1967	66	5.
					JUL		JAN				ł	SEP		FEB		APR					[]	1							AU6	1	
R	82.6	68.7	75.6		1983		1977	199	4095	57.55	24.40		0.01		16.21		0.0		0.0		81	84	61	70	9.2	ESE	74	36	1964	73	5.

Orlando, Florida International Airport

			Temper	atures	°F			Normal Precipitation in inches Ret Degree days			Rela midi		ct.			Wind			je	ž											
		Normal			Extr	ernes		Degree Base (Wate	equival	ent			s	Snow, Ic	e pellet	5	Hour	Hour	Hour	Hour		thru 1963		test r	nile	ole sunshine	cover, tenths,
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Ysar	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	<u>∓</u> 07 Local	13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cov
a)				41		41					41		41		41		11		11		19	20	20	20	35	15	34	34			3
J	71.7	49.3	60.5		1963		1981	212	73	2.10	6.48		0.15	1950	3.42		T	1977		1977				68		NNE			1953		5
F	72.9	50.0	61.5		1962		1970	172	74	2.83	8.32		0.10		4.38		0.0		0.0			86		63	9.8		46	25	1969		5
M	78.3	55.3	66.8		1970		1980	68	124		10.54		0.16		5.03		0.0		0.0			87			10.0		45		1955		5
•	83.6	60.3	72.0		1968		1954	0	214	2.19			0.14			1982	0.0		0.0			87		57	9.5		50		1956		5
M	88.3	66.2	77.3				1945	0	381		10.36		0.43		3.18		0.0							62	8.8		46		1981		5
1	90.6	71.2	80.9	120	1950	60	1951	D	477	7.39	18.28	1968	1.97	1948	8.40	1945	0.0		0.0		88	89	57	12	8.1	54	64	32	1970		6
1	91.7	73.0	82.4	100	1961	64	1981	D	539	7.78	19.57	1960	3.53	1981	8.19	1960	0.0		0.0		89	90	59	75	7.4	s	46	14	1961		6
1	91.6	73.4			1980	64	1957	Ō	543			1972	2.92	1980		1949	0.0		0.0		90	92	60	77	7.2	5	50	32	1957		6
s	89.7	72.5	81.1		1977	56	1956	0	483		15.87		0.43		9.67	1945	0.0		0.0			91	60			ENE			1969		6
0	84.4	65.4	74.9		1962		1957	0	307		14.51		0.35		7.74	1950	0.0		0.0			68			8.7		48		1950		5
N	78.2	56.8	67.5		1980		1950	47	122	1.78	6.55		0.03		4.03		0.0		0.0		86	88	54	72	8.7		46		1968		5
	73.1	50.9	62.0	90	1978	20	1983	157	64	1.63	5.33	1983	T	1944	3.61	1969	0.0		0+0		86	87	57	72	8.7	NNE	32	07	1968		5
					HAY		DEC					JUL	· ·	DE C]	SEP		JAN		JAN						ŀ			JUN		
R	82.8	62.0	72.4	132	1945	20	1983	656	3401	47.83	19.57	1960	Т	1944	9.67	1945	T	1977	T	1977	86	88	55	69	8.6	S.	64	32	1970		5.

Pensacola, Florida Regional Airport

			Tempera	ntures	۴			Normal Precipitation in inches Degree days Base 65 °F Water particular					Rela midit		:t.			Wind			e i	ţ,									
		Normal			Extra	mes						Water	equivale	nt			s	now, Ic	e pellets	5	Hour	Hour	Hour	Hour			Fast	est m	nile	ole sunshine	cover, tenths, sunset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record kowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00	т D6 Local	12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky con sunrise to sur
(a)				20		20					20		20		20		20		20		18	18	18	18	20		13	13		[.] 5	17
ンドドメドレ	60.6 63.6 69.2 76.7 83.7 89.0	42.7 44.8 51.4 59.3 66.3 72.1	51.7 54.2 60.4 68.0 75.0 80.6	82 85 89 96	1975 1972 1974 1981 1964 1978	19 22 37 48	1982 1970 1980 1973 1979 1966	445 327 184 29 D 0	33 24 42 119 310 468	4.90 5.66 4.45 3.87	13.41 11.66 12.96 15.52 8.35 17.68	1979 1964 1969	0.60 1.07 0.87 0.67 0.30 0.86	1980 1967 1971 1965	5.44 4.70 11.10 7.51 4.74 6.77	1982 1979 1964 1970	1.9	1977 1973 1980	1.9	1977 1973 1980	77 80 82 84	80 82	58 59 57 59	67 69 67 67	9.0 9.4 9.7 9.5 8.5 7.5		35 32 32 35 35 32 32	09 10 20 29	1983 1973	53 61 63 67	6.6 5.7 6.2 5.6 5.6 5.4
Jevozo	90.1 89.6 86.6 79.3 69.4 63.2	74.4 73.9 70.9 59.5 49.8 44.4	82.3 81.8 78.7 69.4 59.7 53.8	130 98 92 85		63 93 37 25	1967 1967 1967 1962 1976 1983	0 0 35 192 359	536 521 411 171 33 12	7.04	20.36 13.09 11.53 12.01 6.54 9.58	1967 1975 1970 1975	1.69 3.10 0.96 0.00 0.30 0.57	1972 1978 1978 1978	5.14 4.73 10.02 4.98 3.59 4.52	1978 1967 1967 1975	0.0 0.0 0.0 0.0 0.0 T	1963	0.0 0.0 0.0 0.0 0.0	1963	85 86 83 79 81	88 90 87 84 83	64 66 62 55 59	71 74 71 68 73	6.9 6.5 7.6 7.9 8.3 9.0		35 35 53 29 35 32	05 10 11 21	1975 1979 1979 1970 1972 1972	58 60 71 64	6.2 6.1 5.5 4.4 5.1 6.1
۲R	76.8	59.1	68.0	106	JUL 1980		JAN 1982	1571	2680	61.16	20.36	UUL 1979		DCT 1978		MAR 1979	2.5	JAN 1977	1.9	FE8 1973	82	85	60	70	8.3		53	10	SEP 1979	6 0	5.7

Tallahassee, Florida Municipal Airport

			Тепре	*10-44	·•			Normal Precipitation in Inches		Ri humi	elutry idiry				Wind			,z												
		Normal	.	\lfloor	Exer		•		Normal Preceitation Dopres days Base 85 ° F Watar equivalent			s	now, ic	a pellet	·		 	T T T		thru 1963	Faar	nant r	nike	denus et	tend.					
	Daily maanaam	Didy Didy Didy	Monthiy	Record	, 1	Necord	×.	₩.	Cooling	Normal	Maximum monthly	*,	Minimum	- - - -	Maximum in 24 hrs.	Yur	макитит Макитит	**	Muximum in 24 hrt	ž	01 0	·	3 7 8	11	Prevalung derection	Page 1	Direction	ť	Per of possible	14
l		r –		23	[23					52	Τ –	23	Ť	23		23		23		22 2	2 2	2 22	22	z	201	24			2
i.	63.4	39,9	\$1.6		1972		1981	491	25	4.66	11.68	1975	0.40	1969	3.75	1976	΄ T	1977	7	1977	a 5 b	ي اي	o 73	7.2	ا ما		23	1943	1	
L	65-9				1962		1971	341	22		11.50			1976	6.04	1983	0.4	1433	0.4	1973						40		1747		5.
L	72.7	47.1			1967		1980	191	42	5.60	13.57	1973	1.24	1947	7.15	1962	т	1980	Т	1980	86 8	9 5	2 61	a.0				1964	1	
L	80.0	5 • • D	67.1		1968		1471	48	111	4-13	13.13	1973	1 3.55	2972	4.73	1964	0.0		0.0		84 9			7.3		35		1963	1	5.
L	86.0		74.0		1405		1971	0	279	5-16	11.66	1976	T	1965	4.50	1979	0.0		0.0		89.98	1 5.	1:61	6.4	E 1	io+ ا		1961	i -	5
	90.1	68.8	79.5	130	1969	**	1972	0	+35	6.55	12.62	1965	2.09	1977	6.75	1956	0.0	I	0.0		40 9	L 5	5 67					1966		5.
	90.9						1967	0	502		20.12				8.99	1969	0.0		c. o		93 9	ء اه ا	2 74	5.4	SW	361	23	1963		1.
	90.0	71.6	81-1		1980		1963	0	499		15.73				3.39		0.0		0.0		9319	5 6	2 76	5.2	10	50	02	1962	i i	<u>ا</u> د.
	87.8		78.3		1962		1967	_0	397		15.92						0.0		0.0		9] 9		0 75		ENE			1963	i i	14
	8D.		48.4		1971		1973	36	143		11.79			1961			0-01		0.0		8819	115	3 72	6.5	, N	301	34	1961	i -	4.
	71-5				1461		1970	210	24		10.44				4.98		0.0		0.0						'N	31	29	1963	i i	5 ا
	65.3	+0.7	53.0		1971	i m	1965	363	11	4-58	12.45	1954	[0.0+	3480	9.24	1965	1	1976	r	1 *76	** *	1,54	• ⁷⁷	6.7	(*	32	15	1969		6.
				1	JUL		JAN			1	1	JUL	í	BAT		SEP		FEO		FER	1			1					l -	
	76.7	\$5.7	67.2	133	1960	6	1981	1652	2492	69.59	20.12	1 *6 4	1 1	1945				1973	0.4	1973		່ຍ	امحأء	6.6	- i	58	37	1942	1	15.

Tampa, Florida International Airport

			Temper	nturm	"F	_		Non						Ревсір	itation ir	inches			-		hu	Reter		t.			Wind	_		1	
		Normal	•	[Estr	-	,	Banna (55 °F		•	Wate	equivela	m			s	inow, la	e pellet		- <u></u>	Ter 1	Hour	Hour		thru 1763	Faa	uent r	nile		DOVER, LINE
Month	Darly maximum	Daily Minimum	Monthly	Record	. <u>*</u>	Poor N	3	Hanting	Cooling	Horm I	Maximum monthfy	Ý.	Minimum monthly		Maximum in 24 hr.	 }	Maximum monthly	Year	Maximum In 24 hrs.	Year	101	1 07	13	19	Man pred m.p.h.	Prevailing direction	брен И. Р. П П. Р. П	Direction		8	Menn Liky CO
(a)				.,,		37					37		37	<u>†</u>	37	- 1	37		37		ZO	50	20	20	37	14	31	33		36	37
J F F A F	70.0 73.3 76.2 81.9 87.1	49.5 56.1 61.1 67.2 72.3	60.6 66.2 71.6	98 93 93	1975 1971 1979 1975 1975 1977	24 29 40 49	1981 1958 1980 1971 1971 1972	226 186 87 0 0	66 68 124 202 375 477	1-62	7.95 12.64 6.59 17.64	L963 E959 1957 L979	1 0.21 0.06 1	1956 1981 1973	3.29 3.68 5.20 3.70 11.84	1981 1960 1951 1979	0.2 T 0.0 0.0		T T 0.0	L977 L953 L980	83 83 82 82	86 86 87 86	56 55 51 53	67 61 62	7.4 7.7 7.5 8.9	E S ENE	35 50 43 57 46	32 29 29 36	1+5+ 1754 1756 1961 1958	66 71 75 75	5.6 5.5 5.0 5.2
	90.3 90.3 88.5 81.7 76.9 71.6	74.2 74.2 72.8 65.1 56.4	82.2 82.2 80.9 74.5 66.7	97 98 96 96 96	1964 1975 1975 1972 1959 1971	63 67 57 40 23	1970 1973 1981 1981 1964 1970	65 0 0	533 533 471 295 116	7.35 7.64 6.23 2.34 1.67	7.36	1960 1949 1979 1978 1952	2.35 1.20 1.15	1+81 1+52 1972 1+79 1950	5.53 12.11 5.37 4.67 2.54 4.22	1950 1949 1950 1968	0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0		85 87 86 85 85	#7 #6 #1 91 #8 88	63 65 67 57	13 76 75 71 74	7.2 8.0 8.7 8.5	C Che Ene Nne Nne	67 58 38 56 38 60	32 L1 34 02 29	1964 1963 1961 1960 1953 1963	60 60 60 64 65	6.7 6.7 6.5 5.2 5.0
¥R	•1.4	50.P	1		1978 Jün 1977		1967 DLC 1962	173 739	58 3324	2.14		1950 UUL 1960	D.21 1	APR	3-28	JUL	0.0	JA N 1977	a.o	ийц 1977		48	i	i	8.7 8.6		•5	36	1953 JUN 1964		: 5.6] _{5.7} }

West Palm Beach, Florida Palm Beach International Airport

	_		Тетрег	atures	*F		_	Nor	musi: e daya					Precią	vlation in	inches						Relati nidit		۲			Wind			į
		Normal	, <u>-</u>		Ex07	90045 T	• —	Baar				Wyta	r equival	ent			s	śniow, lo	a pelleti	•	Нон	Mor	No.	Hour		(taru 196)	Faart	est mile		<u>۽</u> آڏ
Month	Daily maximum	Daily Bio By	Monthily	Renord	,	Record	Yner	Heating	Cooling	Normal	Muximum monthly	 	Minimum Monthly		Maximum in 24 hrs	,	Maximum monthly	Year	Maximum un 24 hrs.	Yest	01	≚ 107 סכו∎	13	19	Mun Deed	Precauling duraction	n p.h.	Diraction	1.2	Pet. of possible Mean sky cover, aunries to sume
(4)		!		•7	ſ	+7				-	•5	+ —	+5	1 -	45		38				1.0]	19	39	19	*1	14	34	34	1	1 35
J F H J	74.5 75.3 79.3 42.5 45.7 88.1	65.1 69.5 72.1	65.2 65.6 70.1 73.8 77.6 80.4	90 94 99 99 98	1942 1949 1977 1971 1971 1960	32 30 45 53 62	1977 1978 1980 1971 1971 1965	92 86 18 0 0	99 108 176 264 341 462	2.62 2.69 3.21 6.02	11-01 8.71 16.78 18.26 15-22 17.9]	1983 2982 1982 1982	0.29 0.33 0.04 0.39	1956 1967	8-60 15-21 7.04	1966 1982 1982 1983	T 0+0 1 0+0 1 0+0 0+0		7 0.0 0.0 0.0		79 77 75 76	81 4D 77	56 55 54 59	64 67 65 70	9.8 10.4 10.8 10.4 4.8	SE SE E Ese	40 51 55 45 71	29 19 29 19 27 19 32 19 27 19 19	56 57 58 58	5.0 5.7 5.6 5.4 5.9 6.7
CIZO 5 + C	89.7 96-1 88-4 84-4 79-6 75,7	74.8	82.5 A1.4 77.3 71.6	98 97 95 91	1942 1963 1937 1959 1941 1941	65 66 86 36	1937 1957 1938 1968 1950 1983	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	527 543 492 361 207 119	5.76 9.29 7.77 3.39	27.74 13-52 24-86 18-74 14-63 8.73	1950 1960 1965 1982	2.16	1955 1939 1972 1970	B.71 9.59 5.89	1949 1950 1955 1962	0.0 0-0 0-0 0-0				83) 84 80 80	84 86 83 82	63 66 67 60	75 74 74 75	7.5 7.6 8.6 10.0 10.0 9.9	ESC ENE ENE	46 56 74 35 36	34 13 13 15 36 13 16 13 34 13 07 13	69 79 44 59	6.6 6.9 6.2 5.7 5.6
TR	82.8	66.3	24.6		JUL	27	JAM 1977	262	3769	59.77		SEP		her		APR		Jak 1977		.jaan 1977	i		i	ļ		;		13/35	6	\$-5 \$-1

Athens, Georgia Municipal Airport

			Temper	atures	°F			Nori						Precip	itation in	inches					hu	Reta Imidi		ct.			Wind			ei	s,
		Normal			Extr	ernes	_	Base (e days 65 °F			Water	equivale	ent			s	inow, Ic	e pellet	5	Hour	Hour	Hour	Hour		thru 1963		test n	nile	le sunshine	cover, tenths, suriset
Month	Daily maximum	Deily minimum	Monthly	Record highest	Year	Record	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthiy	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01		1 3	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cov sunrise to sur
(a)				40		40					40	Ī	40		40		40	1	40		28	28	28	28	28	8	28	28			35
JFXKEJ	52.2 55.9 63.6 73.6 80.7 86.8	32.6 34.2 41.0 49.7 58.1 65.2	42.4 45.1 52.4 61.7 69.4 76.0	79 58 90 97	1975 1982 1974 1981 1962 1954	5 11 27 37	1966 1958 1980 1950 1971 1972	701 557 402 130 30 0	0 12 31 167 330	4.85 4.16 5.81 4.04 4.78 4.00	9.24 10.93 9.54	1964 1959	0.75 1.88 0.69 0.55	1982 1950		1981 1964 1979 1959	4.7	1979 1983	4.0	1948 1952 1983	71	78 81 82 86	55 53 51 54	59	8.5 9.0 8.9 8.5 7.1 6.6	NN NN NN Ehe	52 52 50 47 35 40	20 24 23 16	1959 1961 1974 1957 1968 1957		6.2 5.9 6.0 5.5 5.7 5.7
JANOZD	89.3 88.8 82.9 73.6 63.3 54.7	68.9 68.2 62.9 50.5 40.9 34.7	79.2 78.5 72.9 62.1 52.1 44.7	137 99 98 86	1977 1983 1957 1954 1961 1971	54 36 24 7	1967 1968 1967 1952 1950 1962	0 0 129 387 629	440 419 242 39 0	5.18 3.64 3.58 2.70 3.32 4.09	10.53 7.43 7.09 7.73 14.98 8.45	1961 1970 1964 1948	0.52 T 0.33	1951	4.14 3.05 5.34 4.70 4.05 4.33	1969 1956 1964 1948	0.0 0.0 0.0 2.2 3.0			1968 1971		92 92 89 85	59 60 55 54	73 68 65	6.2 5.7 6.4 6.8 7.4 8.1	SH NE NE NH	35 40 37 29 35 43	16 15 07 29	1983 1959 1980 1956 1957 1957		6.0 5.5 5.6 4.6 5.1 5.9
¥R	72.1	50.6	61.4		AUG 1983	-1	JAN 1966	2965	1680	50.15		NOV 1948	т	0CT 1963	9.93	JUN 1967	8.7	MAR 1983	8.7	MAR 1983	80	85	56	64	7.5	NW	52	20	FEB 1961		5.7

Atlanta, Georgia Hartsfield Atlanta Intl. Airport

			Temper	atures	°F		Normal Precipitation in inches Degree days Base 65 °F Water equivalent Country of the second			Relat midit		t.		_	Wind			hine	ţ,												
	·	Normal			Extr	emes						Water	equivale	mt			s	now, Ic	e pellet	5	Hour	Hour	Hour	Hour		thru 1963	Fast	test n	nile	SUNS	ier, tenths, net
Month	Daily meximum 🕈	Daily minimum	Monthly	Record highest	Year	Record lowest	Ý	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hm.	Year	Maximum monthly	Year	Maximum in 24 hr.	Year	01	⊥ 107 .0Cel	13		Meen speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunse
(a)				35	1	35					49		49		49		49		49		23	23	23	23	45	14	7	7		48	49
J F H A H	51.2 55.3 63.2 73.2 79.8	32.6 34.5 41.7 50.4 58.7	41.9 44.9 52.5 61.8 69.3	79 85 91	1949 1980 1982 1980 1980	5 10 26	1982 1958 1960 1973 1971	716 563 400 133 37	0 12 37 170	4.43	10.82 12.77 11.66 11.86 8.37	1961 1980 1979	0.77 2.44 1.45	1981 1978 1974 1950 1936	5.09	1961 1976 1979	4.4	1940 1979 1983 1971	4.2	1940 1979 1983 1971	69 69 70	75 78	54 51 50	56 54 52	10.6 10.9 10.9 10.1 8.6	N¥ N¥ N¥	46 36 38 36 44	17 30 32		54 57 65	6.4 6.2 5.6 5.7
J	85,6 87.9	65.9	75.8				1956	5	329	3.41	7.52	1939	0.74	1944	3.41	1943	0.0		0.0		81	85	57	62	8.0 7.5		40		1977		5.8
A S	87.6 82.3 72.9	69.2 68.7 63.6 51.4	78.6 78.2 73.0 62.2	102 98	1980 1980 1954 1954	56 36	1967 1964 1967 1976	0 0 7 130	422 409 247 44	4.73 3.41 3.17 2.53	11.26 8.69 7.52 7.53	1967		1980 1976 1954 1963	5.44 5.05 5.46 3.46	1940 1956	0.0		0.0		86 84	89 90 89 84	61 61	68 69	7.5 7.1 8.0 8.5	NV ENE	39 30 37 28	07 27		65 63	6.3 5.8 5.5 4.6
N D	62.6 54.1	41.3	52.0	84	1961 1971	3	1950 1983	394 636	0		15.72	1948		1939 1979	4.11 3.85	1935	1.0	1968 1963	1.0	1968 1963	75	81	55	63	9.1 9.9	NY	33 32	08 31	1977	60	5.3
۲R	71.3	51.1	61.2	105	JUL 1980	-5	JAN 1982	3021	1670	48.61	15.72	NOV 1948	T	DCT 1963	5.67	FE8 1961	8.3	JAN 1940	8.3	JAN 1940	77	83	56	6Z	9.1	NW	46	23	JAN 1978	61	5.8

Augusta, Georgia Bush Field

			Tempera	Degree days	itation in	inches						Rela midi		et.			Wind			erie	ž										
				Water	equivale	nt			s	inow, Ic	e pellet	3	ŗ	Hour	Hour	dır.		thru 1963	Fast	test m	nile		er, tenths, set								
Month	Daily meximum #	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Meximum in 24 hrs.	Yaar	Maximum monthly	Year	Maximum in 24 hrs.	Year		운 07 .ccal	13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunset
(a)				33		33					33		33		33		33		33		19	19	19	19	33	13	33	33			33
JFEAEJ	56.7 60.1 67.6 76.8 83.7 89.1	33.2 35.0 42.0 49.5 58.3 65.6	45.0 47.5 54.8 63.2 71.0 77.4	93 99	1975 1962 1974 1980 1964 1952	9 12 26 35	1982 1973 1980 1982 1971 1972	626 495 332 92 17 0	6 5 16 38 203 372	3.99 4.04 4.92 3.31 3.73 3.88	7.67	1979	0.75 0.69 0.88 0.60 0.48 1.56	1968 1968 1970 1951	3.61 3.59 5.31 3.96 4.44 5.08	1962 1967 1955 1981			13.7		76 76 79 85	81	49 48 46 50	59 56 55 61	7.1 7.7 8.0 7.6 6.5 6.1	WNW WNW SE SE	36 40 52 39 48 62	30 23 32 28	1978 1982 1972 1962 1967 1965		6.2 5.9 6.1 5.4 5.9 5.9
JASONU	91.4 90.9 85.6 76.9 67.5 59.2	69.6 68.9 63.5 50.1 40.3 34.6	80.6 79.9 74.6 63.5 53.9 46.9	109	1980 1983 1957 1954 1961 1982	54 36 22 15	1951 1968 1967 1952 1970 1981	0 0 107 338 561	484 462 288 61 D	4.40 3.98 3.53 2.02 2.07 3.20	11.43 9.91 9.51 6.90 6.18 8.65	1964 1975 1959 1957		1980 1967 1953 1960	3.71 5.98 4.93 2.67 2.63 3.12	1964 1969 1964 1955	0.0 0.0 0.0 0.0 T 0.9	1968 1958	0.0 0.0 0.0 0.0 7 0.9		90 90 87 83		56 56 49 49	72 77 76 71	5.9 5.5 5.6 5.8 6.1 6.7	SE NE NU	48 45 35 40 40 34	16 32 18 27	1970 1953 1959 1977 1954 1954		6.2 5.7 5.8 4.7 5.1 5.9
YR	75.5	50.9	63.2	138	AUG 1983	1	JAN 1982	2568	1935	43.07	11.92	MAR 1980	T	0CT 1953		AUG 1964	14.0	FEB 1973	13.7	FEB 1973	83	86	51	66	6.5	SE	62	08	JUN 1965		5.8

Columbus, Georgia Metropolitan Airport

			Tempe	atura	*F			Nor	mai e days					Precip	itation in	inchen					hu	Rela midit		.			Wind			ŝ	2
		Normal	Extrem	emies		6.m	65 °F			Weto	r aquivale	ent			5	now, le	a pellet	3	Hour	Ter.	ĻOČ	Hour			Fast	taat n	nile	la num	er, tentrs,		
	Deily muximum	Daily minimum	Monthly	Record highest	Year	Record	Year	Hwiting	Cooling	Narmal	Maxlmum monthly	Year	Minimum monthly	×.	Maximum in 24 hr.	Ytear	Maximum monthly	Year	Maximum In 24 hrs.	Year	01		13		Mian speed m.p.h.	Prevalling direction	Speed m.p.h.	Direction	Yaar	Pet. of possible	Mean sky cover, storier to store
ł				38		38	_				38		38		38		38		38		18	38	38	38	25		25	Z5			30
	56.9	35.4 37.0	46.2		1949 1962		1966	593 460	30 7		30.22			1954 1951	* . 27			1982	1.4	1977	79	85	60	70	7.3		37 52		1974		6.4
	68.0	43.9	56.D		1982		1960	299	20		12.53		1.40		5.30			1980		1980					0.3		94		1940 1963		6.2
L	77.4	51.9	64.7		1970	28	1950	84	75		11.67			1967				1971		1971					7.3		40		1963		1.
	83.6	60.2	72.0		1962		1963	9	Z76		8.45			1962	4-61		0.0		0.0	•	64	45	51	60	6.5		39		1971		5.1
L	89.4	67.6	78.5	154	1978		1956	0	485	4.15	30.63	1967	1.24	1979	3.65	1959	ō.a		0.0			86			6.1	ł	55		1971		5.1
	91.1	71-0	81.D				1967	Đ	496		13.24		1.74	1957	5.32	1955	0.0	i	6.0		87	90	58	69	5.5		52	36	1962		6.1
L	90.8	70.5	60.7				1952	0	467		30.07			1956			D.O		6.0			91			5.3		47		1959		5.4
	66.0	65.9	76.0		1957		1957	Q	330		6.94		0.42		4.25		0.0		0.0		87	90	57	71	6.4		38	36	1963		\$.1
	77.0 67.0	53.1	45-1		1954		195Z	63	86		8.09			1963			0.0		0.0		84	9Ŭ			6.5		26	23	1963		1845
	59.5	37.2			1961		1950	313	10					1956				1975	т	1975			541		5.4		37		1973		5.3
	,,,,	31+2	40.4	1 **	1.411	`	1952	515	D	4.75	9.39	1923	0.43	1955	4-41	1970	1	1981	Ŧ	1981	61	85	56	72	7.0		35	22	1769		6.1
					JUN		JAN					իսե		ост		AUG	-	FEB		FEB			- i		[ļ	JUN		
L	75.6	53.0	64.4	104	1978	3	1966	2356	2152	51.09	43.24	1971	0.00	1963	5.8D	1977	19.0	1973	10		n3	87	55	46	6.7		55		1971		5.0

Macon, Georgia Lewis B. Wilson Airport

			Тетре	nturne	۴F			Nor						Precip	itation in	inches					лu	Rela Irmidi		ct.			Wind			<u>*</u>	¥
		Normel			Extr			Bees (e days 85 °F			Wate	r equivale	nt	-		s	inow, la	a pelle	x	Hour	žer	Hour	Hour		thru 1963		itent r	niks		er, tenths,
Month	Oaily meximum	Deily minimum	Manthiy	Record	ļ	Record Kowtert	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Y Her	Muximum in 24 hr.	Y	Kuximum monthly	Υ π κ	Maximum in 24 hrs	Yaar	01		13	17	Man peed m.p.h.	Prevailing direction	Seed A.q.m	Direction		Pct. of possible	Maan sky cover, surrise to surrest
(=)			[35		35					35		35		35		35		35		19	19	19	19	35	15	37	33		35	35
JF F 4 F J	57.6 61.1 68.6 78.2 85.0 90.4	35.5 37.9 44.2 52.3 60.3 67.3	65-3 72-7	85 95 94 99	3949 3962 1949 1970 1967 1967	9 14 31 40	1966 1973 1980 1983 1973 1972	580 452 287 60 10	10 9 24 69 249 417	3.51	9-32 11.90 8-42 11.77	1983 1980 1964 1957		1976 1968 1972 1956	4.44 5.17 3.94 3.65 5.37 4.97	1981 1970 1955 1976	16.5	1955 1973 1980	16-5		76 77 79 83	43	54 52 49 51	54 56 53 58	8.9 9.4	UHU UHU NV	60	NE N Se	1952	59 63 69 70	6.3 6.0 6.1 5.4 5.7 5.8
D Z O V P L	97.2 91.9 86.8 78.0 68.1 60.2	70-6 70-0 65-1 52-3 42-5 37-1	81.0 76.0 65.2 55.3	105 102 100 80	1980 1980 1980 1954 1961 1972	55 35 26 10	1967 1552 1967 1952 1950 1950	0 0 86 299 505	508 596 135 92 8 0	4.46 3.44 3.29 1.98 2.32 4.04	7.09 8-82 9-39	1959 1983	0.41	198D 1970 1963 1956	5-35	1959 1956 1970 1983		1950 1963	0.0 0.0 0.0 0.0 0.2		89 89 45 82	13 89 87	54 59 52 52	69 72 67 66	6.9 5.4 7.0 7.3 7.3	NE NE NE UNU	59 70 90 32 54 50	S Nu Su	1754 1761 1754 1754 1957 1957	64 69 62	6.4 5.7 5.8 4.6 5.1
R	76.5	52.9	64.7	178	JUL 1960	3	JAN 1966	2279	2217	49.86	11.90	MAR 1980	c. 00	0CT 1963		MAY 1976		FEB 1973	16.5	FEB 1973	B3	67	54	63	7.7	UNU	70	5	AUG 1961	63	5.8

Savannah, Georgia Municipal Airport

ŀ		De							mai e days					Рпесяр	itation in	incher						Rele midi		.t			Wind			ł	Ē
		Normal			Extr.	arnes.	•	Base	85 °F		_	Wata	r aquivak	en (s	now, le	a pellet	3	Hour	HQL	Hour	Hour		thru 196)	Fest	teent m	nite	E.	y, tintha,
	Daily maximum	Daily minimum	Monthly	Hecord	Year	Record	Yuur	Hunting	Cooling	Normal	Maximum monuhly	Year	Minimum monthly	Yaar	Maximum In 24 hr,	Year	Maximum monthly	Yoar	Meximum In 24 hrt.	Year	01	107 Local	۱ ۱3	19	Men speed m.p.h.	Prevaling direction	Speed mp.h.	Direction	Y Br	Pot of possible	Mean sky cover, sumet
ł			Į	2.2		33	[32		33		33		33		33		19	19	19	19	33	13	29	29		33	33
!	66.3	37.9 90.0	51-6		1957 1962		1966	507 387	17	3.09	3.18		0.51		2.80			1977		1977					8.6				1955		6.1
	69.9	46.8	50.4		1974		1986	243	38	3.43	9.57		0.10					1983		1983					9.3		2		1960		6.0
	77.6	54.1	66-0		1967		1962	•2	72	3.16	7.74		0.71		5.62		0.0		0.0			83			5.8		16 I		1963		6.0
	84.2	62.3	73.3				1963	1	Z6 1	4.62	10.08	1957	D.51	1 95 3	5 . 67	1976	0.B		0.0	ł		86			7.7		12		1965		5.9
'	58.6	68.5	78.6	123	1954	53	1966	0	408	5.69	1 . 3 9	1963	0.8*	1954	¥ • D6	1963	0.0		0.0			87			7.5		66		1953		6.2
	90.8	71.5	81-2	134	1980		1972	O	502		20.10		1-35		4.36	1957	0.0		0.0		88	89;	59	73	7.1	su	51	SE	1951	67	6.5
	90.1	71.4	80.8	134	1954 1983		1966	0	490		14.94		1.02			1971	0.0		0.0			91			6.6		58	N	1954		6.1
	77.8	55.9	66.9		1954		1967	58	348 117		13.47		0.36		6.80		0.0		0.0				60j		7.Z		58		1979.	57	6.4
	69.5	45.S	57.5		1961		1970	240	15	2.27	8.54		0.02		3.57		0.0		a.a			87			7.5				1952		5.0
	62.5	39.4	51.0		1971		1963	444	10	2.77	4.91 5.6D		0.15		5.02		0.0 T	1940	ь, a	1760		85 62			7.5		34		1957 1962		5.2
				i	JUL		σες				1					- · · ·			ł			••				nc	1		1405	24	6.0
	76.7	55.1	65.9				1983	1921	7290		20.10	UUL DOL		100		306		FEB		FEB				- 1					.⇒U/k		l l
1				1 · · ·	1.30	2	1103		6740	****	Fa-16	1 2 2 4	0.02	1963	7.0	1971	2.0	1968	3+6	1968	03	85	54,	68	7.9	SH	66	C [1953	• 2	5.9

Baton Rouge, Louisiana Ryan Airport

			Tempera	etures	۴			Norr						Precip	itation in	inches						Relati midity		ι			Wind			, E	ž
		Normal			Extra	ITHES	•	Degree Base (Water	equivale	nt			s	now, Ic	e pellet	•	Hour	Hour	Hour	Hour		thru 1963		test m	nile	ible sunshine	cover, tenths,
	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	¥.	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Yoar	Maximum in 24 hrs.	Year	00	06 .ocal 1	12		Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky o
				33		33					33		33		33		33		33		24	24	24	24	32	12	21	Z 1			3
J	61.1	40.5	50.8	82	1957	10	1982	466	26	4.58	9.93	1966	1.15	1971	4.08	1975	0.6	1973	0.5	1973	81	85	65	67	9.1	N	35	27	1983		6.
F	64.5	42.7	53.6		1962		1956	342	23	4.97	14.51	1966	0.70		4.72		1.8	1973	1.8	1973	78	84	59	60	9.5	NE	35			1	6.
мį	71.6	49.4	60.5		1963		1980	187	47		12.73		0+54		6.07		T	1980		1980					9.5		35		1964	1	6.
٩.	79.2	57.5	68.4		1952		1975	32	134		14.64		0.38		12.08		0.0		0.0			88			9.0		35		1964	1	6.
• [85+2	64.3	74.8		1953		1954	0	304		10.70				4.96		0.0		0.0			9D			7.8	SE	48		1967		5
1	90.6	70.0	80.3	103	1954	55	1972	a	459	3.11	12.25	1983	0.12	1979	3.96	1962	0.0		0.0	1	85	91	58	64	6.7	SE	40	03	1964	ĺ	5
1	91.4	72.8	82.1	101	1960	58	1967	0	530	7.07	10.98	1963	2.05	1962	4.26	1969	0.0		0.0		87	91	62	70	6.0	¥	41	03	1980	1	6
۱I	90.8	72.0	81.4	102	1962	59	1967	0	508		13.31		1.32		6.21		0.0		0.0		88	92 91	62	71	5.6		37 58		1975	1	5
s	87.4	68.3	77.9		1963		1967	0	387		13.95		0.09		6.31		0.0		0.0		88	91	61	70	6.7		58		1965	1	5
0	80.1	56.3	68.2		1952		1957	48	147	2.63	9.46		T	1978	8.38		0.0		0.0			88			6.7		40		1964	Í -	
N	70.1	47.2	58.7	86	1971		1976	218	29		10.35		0.25		4.67		I	1976	1		85			68	7.8		31		1977	İ	5
1	63.8	42.3	53.1	85	1982	111	1983	380	11	4.99	15.94	1982	1.94	1978	8.28	1982	T	1983	T	1983	82	86	63	68	8.4	SE	30	16	1966	1	6
					JUN		JAN					DEC		0CT		APR		FEB		FEB									SEP	1	
R	78.0	57.0	67.5	103	1954	10	1982	1673	2605	55.77	15.94	1982	T	1978	12.08	1967	1.8	1973	1.8	1973	84	88	59	65	7.7	SE	58	06	1965	1.	. 5

Lake Charles, Louisiana Municipal Airport

			Temper	atures	۴			Norr						Precip	itation in	inches						Relat nidit		ı.			Wind			aine	ź
		Normal			Extr	emes		Degree Base f				Water	equivale	ent			S	now, Ic	e pellet	5	Hour	Hour	Hour	Hour		thru 1963	Fast	test m	nile	ssible sunst	cover, tenths,
Month	Daily maximum	Deily minimum	Monthly	Record highest	Year	Record kowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00		1 Z	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possit	Mean sky co
a)				19	1	19					22	1	22		22		22		22		19	19	19	19	22	2	22	22		2	2 2
J F M A H J	60.8 64.0 70.5 77.8 24.1 89.4	42.2 44.5 50.8 58.9 65.6 71.4	51.5 54.3 60.7 68.4 74.9 80.4	83 96 92 94	1982 1972 1974 1965 1977 1969	22 25 34 49	1982 1981 1980 1971 1978 1979	442 324 184 29 0	24 24 51 131 307 462	3.88 3.05 4.06 5.14	12.69 6.75 9.01 10.95 20.71 14.42	1969 1980 1973 1980	0.78 0.80 0.27 0.52 0.34 0.84	1962 1971 1978 1978	3.60 3.28 4.91 5.50 16.88 7.09	1963 1973 1973 1980		1973 1968 1968	0.3	1	84	86 88 90 92	63 62 62 62	69 69 67 68		s s s	58 90 90 84 93 38	25 18 06 32	1962 1971 1973 1973 1973 1973	45 61 65 79	7.6.6.6.05.6.05.05.05.05.05.05.05.05.05.05.05.05.05.
-	91.0 90.8 87.5 86.8 70.5 64.0	73.5 72.8 68.9 57.7 48.9 43.8	82.3	102 100 96 92 87	-	61 61 47 36 23	1967 1967 1967 1980 1976 1983	0 0 45 204 351	536 521 396 178 45 7	5.55 5.39 5.21 3.47 3.76	13.19 17.36 19.96 17.28	1979 1962 1973 1970 1974	D.77 1.01 T D.11	1962 1963 1967	14.10 11.20 7.24 3.51	1962 1979 1970 1966	0.0 0.0 0.0 0.0 T T	1976 1963	0.0 0.0 0.0 0.0 T T		91 90 88 87	93 92 90 88	64 63 55 59	74 71 75	6.1 7.2 7.6 9.0	SSW ENE ENE ENE	35 46 40 33 35 32	11 36 27 32	1974 1964 1971 1973 1975 1982	81 85 74 5(5 5
R	77.6	58.3	68.0	132	JUL 1980	13	DEC 1983	1579	2682	53.03	20.71	MAY 1980	т	0CT 1963	16.88	MAY 1980	4.0	JAN 1973	4.0	JAN 1973	88	90	63	71	8.7	s	58	32	JAN 1962	61	5

New Orleans, Louisiana New Orleans Intl. Airport

			Tempera	atures	°F			Norr						Precipi	tation in	inches						Relat midit		t.			Wind			ine	ž
		Normal			Extr	emes		Degree Base (e days 55 °F			Water	equivale	nt			S	now, Ic	e pellet	5	Hour	Hour	Hour	Hour		thru 1963	Fast	test m	nile	ble sunshine	cover, tenths, sunset
Manth	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00	T D6 .ocal	1 2	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky co sunrise to su
(a)				37		37					37		37		37		37		37		35	35	35	35	35		24	24		10	35
JFHAH	61.8 64.6 71.2 78.6 84.5	43.0 44.8 51.6 58.8 65.3	52.4 54.7 61.4 68.7 74.9	85 89 91	1982 1972 1982 1948 1953	19 25 32	1963 1970 1980 1971 1960	423 318 171 25 0	32 30 59 136 307	5.23 4.73 4.50	13.63 12.59 19.09 16.12 14.33	1983 1948 1980	0.54 1.02 0.24 0.28 0.99	1962 1955 1976	6.08 5.60 7.87 7.95 9.86	1961 1948 1980	2.0	1973 1958 1980		1973 1958 1980	81 82 84 86	84 84 88 89	63 60 60 60	67 65 65 65	9.8 10.0 9.5 8.1		46 43 37 35 55	26 18 20 36	1969 1980 1973	52 56 62 59	6.7 6.2 6.4 5.8 5.9
ר ר ר	89.5 96.7 90.2 86.8	70.9 73.5 73.1 70.1	80.3 82.1 81.7 78.5	101 102	1981 1980	60 60	1972 1967 1968 1967	0	459 530 518 405	6.73 6.02					4.19 4.30 4.82 6.50	1966 1975	0.0 0.0 0.0		0.0		89 88	89 91 91 89	66 66	73 73	6.9 6.1 5.9 7.2		48 44 42 69	13 33 09	1979 1969 1965	61 61	5.2 6.3 5.7 5.4
0 N D	79.4 70.1 64.4	59.0 49.9 44.8	69.2 60.0 54.6	92	1977 1979 1978	35 24	1968 1970 1983	31 186 336	161 36 13	2.66	6.45 14.58	1947	0.00	1978 1949	3.44 8.72 5.71	1975 1975	0.0 T 2.7	195D 1963	0.0 T 2.7	1950 1963	84		61	74	7.5 8.6 9.1		40 32 46	21	1964 1983 1973	68 55 55	4 • 2 5 • 2 6 • 2
YR	77.7	58.7	68.2	172	AUG 1980	14	DEC 1983	1490	2686	59.74	19.09	MAR 1948	0.00	ОСТ 1978	9.85	MAY 1959	2.7	DEC 1963	2.7	DEC 1963	85	67	63	70	8.Z		69	09	SEP 1965	59	5.7

Shreveport, Louisiana Shreveport Regional Airport

			Temper	atures	°F			Nor	mal e days					Precip	itation ir	inches	·					Relat midit		it.			Wind			<u>.</u>	£
		Normal			Extr	emes	•	Base			-	Wate	r equivak	mt	_		s	inow, Ic	a pellet		Hour	Hour	Hour	Hour		thru 1963	Fas	itest n	nile	le sumhine	er, tenths, art
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00	1 06 .ocal	12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Y ser	Pct. of possible	Mean sky cover, sunrise to sunset
(a)				31		31					31		31		31		31		31		31	31	31	31	31	11	21	21		31	31
J F H A H	55.8 60.6 68.1 76.7 83.5	36.2 39.0 45.8 54.6 62.4	46.0 49.8 57.0 65.7 73.0	89 92 91 95	1972 1977 1974 1955 1977	12 20 32 42	1962 1978 1980 1975 1960	597 438 282 69 9	8 12 34 90 257	3.46 3.77 4.71	10.09 8.57 7.23 11.19 11.78	1969 1957	0.27 0.90 0.56 1.06 1.22	1954 1966 1971	3.18 3.53 3.63 7.17 5.27	1965 1979	2.0	1978 1978 1965	2.0	1982 1965 1965	75 75 79	83 83 87	59 57 58	58 55	9.9	5 5 5	37 40 41 52 39	27 29 28	1965 1964	54 56 55	6.8 6.2 6.4 6.4 6.0
J	90.1	69.4	79.8				1977	0	444	3.54	12.39	1961	0.89	1967	4.34	1983	0.0		0.0			90			7.7		37		1963		5.3
L A S	93.3 93.2 87.7	72.5			1962	58	1972 1956 1967	0 0 0	555 539 363	3.56 2.52 3.29	9.46 6.83 9.59		0.15	1980		1972 1955 1961	0.0 0.0 0.0		0.0		82			57	7.2 7.0 7.3	s	46 37 44	25	1982 1963 1965		5.3
0	78.9 66.8	54.5	66.7		1954		1980	76	128	2.63	7.44	1970	0.00	1963	3.88	1957	0.0		0.0		80	88	53		7.5		35		1966	69	5.0
õ	59.2	44.5 38.2	55.7 48.7		1955 1955		1976 1983	293 505	14 D	3.77 3.87	9.49	1957 1982		1967 1981	5.94 3.35	1969 1965	1.3 5.4	1980 1983		1980 1983				66 67	8.6 9.1		38 37		1975 1965		5.4
YR	76.2	54.6	65.4	107	AUG 1962		JAN 1962	2269	2444	43.84		JUN 1961		0CT 1963	7.17	APR 1953		JAN 1978	5.6	JAN 1982	80	87	58	60	8.6	s.	52	28	APR 1975	63	5.7

Jackson, Mississippi Allen C. Thompson Field

			Tempera	atures	°F			Nor						Precip	itation ir	inches					hu	Rela		ct.			Wind			*	
		Normal	r		Extr	mes	,	Base	e days 85 °F			Wate	r equival	ent			s	inow, la	æ pellet	3	Hour		Hour	Hour		thru 1963	Fast	est n	nile	le sunshine	ver, tenths, nset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00	106 	12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cove sunrise to sun
(a)		1		20		20					20		20		20		20		50		20	20	20	20	20		7	7		19	20
J F M A H J	56.5 60.9 68.4 77.3 84.1 90.5	34.9 37.2 44.2 52.9 60.8 67.9	45.7 49.1 56.3 65.1 72.5 79.2	84 89 92 99 103		11 15 30 38 49	1982 1970 1980 1971 1971 1971	611 462 303 77 9 0	13 17 34 80 241 426	4.48 5.86 5.85 4.83 2.94		1979 1976 1983 1967 1975	2.05 1.25 0.74	1969 1976 1966 1965 1977 1973	5.63 3.46 3.87 8.42 3.27 3.24	1974 1964 1979 1966	3.6 5.3	1982 1968 1968 1983	3.6		82 82 84 87	86 87	59 57 56 56	63 59 59 59 61	8.7 8.7 9.3 8.5 7.1 6.3		28 30 39 33 35 37	25 16 34 27	1978 1981 1982 1982 1982 1979 1981	55 59 62 62	6.7 6.1 6.3 5.9 5.8 5.3
J A S O N D	92.5 92.1 87.6 78.6 67.5 60.0	71.3 70.2 65.1 51.4 42.3 37.1	81.9 81.2 76.4 65.0 54.9 48.6	102 104 92 88 84	1981 1980 1981 1971 1978	55 35 30 17 7	1967 1966 1967 1980 1976 1983	0 0 98 316 513	524 502 342 98 13 0	3.71 3.55 2.62 4.18	9.61 9.13	1979 1965 1970 1977	1.45 0.56 0.00 0.93		5.86	1982 1965 1975 1983		1976 1963	0.0 0.0 0.0 0.0 0.2 1.8		90 90 89 87	94 93 90	59 59 53 58	67 71 71 74	5.8 5.6 6.4 6.5 7.4 8.5		37 23 25 30	17 34 15 16	1982 1981 1982 1980 1983 1976	64 61 67 55	5.7 5.4 5.4 4.3 5.5 6.3
۲R	76.3	5,2.9	64.6		JUL 1980		JAN 1982	2 38 9	2290	52.82		DEC 1982		ОСТ 1963	8.42	APR 1979		JAN 1982	6.0	JAN 1982	86	90	59	66	7.4		••		JUL 1982	60	5.7

Meridian, Mississippi Key Field

			Temper	atures	۰F			Nor						Precip	itation i	n inches					hu	Rela		ct.			Wind			hine].
		Normal	r		Extr	mes	, <u> </u>	Base	e days 65 ° F			Wate	r equival	ent			s	inow, la	ce pellet	3	Hour	Hour	Hour	Hour		thru 1963	Fas	stest n	nile	uns -	cover, tenths, sumet
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Meximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Your	Meximum monthly	Year	Maximum in 24 hrs.	Year	00		12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cov surrise to sur
(a)				38		38					38		38		38		38		38		19	19	19	19	24	4	24	24			34
J	56.7	34.2	45.5		1950 1982		1962	616	12			1947	1.59			1972		1948		1948		84	61	69	7.1	NE	30		1975	l	6.7
н	68.6	43.1	55.9		1974		1980	312	30			1976	1.67	1955		1951		1960							7.4	S	35		1963		6.2
	17.7	51.4	64.6		1970		1950	85	73			1964		1976		1964	1.5	1969	1.5		81		53	56	7.9		32		1972		6.2
- M	84.2	59.3	71.7	99	1951	38	1971	17	224	4.20		1980				1952	0.0		0.0				55	22	5.8	2	35		1981 1967		5.0
J	90.4	66.4	78.4	103	1969	45	1956	Ō	402	3.49		1961	0.71		2.65		0.0		0.0			89			5.1	5	32		1962		5.7
J	92.5	70.0	81.3	107	1980	55	1967	o	505	5.32	15.29	1959	1.07	1952	6.95	1060	0.0		0.0		89	91		66	4.7				1964	1	
	92.1	69.1	80.6		1960	53	1952	Ō	484	3.36		6960		1951		1963	0.0		0.0		89		57		4.5		40		1968	i i	6.0
S	87.2	64.2	75.7		1980	34	1967	5	326	3.57	10.24	1957	0.10			1979	0.0		0.0		89		57		5.2		45		1979		5.3
0	77.8	50.0	63.9		1954		1952	118	84			1970	0.00			1970	0.0		0.0		87		51				35		1969		4.4
N	67.3	40.8	54.1		1946		1976	335	8	3.48	13.93	1948	0.38	1956	4.50	1957	T	1976	T	1976			53		6.0		28		1983		5.5
٥	60.0	36.0	48.0	82	1982	٩	1962	527	0	5.66	14.79	1973	1.10	1980	8.13	1973	17.6		15.0	1963			58		6.8	Ň	29		1964	1	6.2
					JUL		JAN					APR		bCT		DEC		DEC		DEC									SEP		
YR	76.3	51.8	64.0	107	1980	0	1962	2479	2158	53.30	16.82	1964	0.00	1963		1973				1963	85		55	65	6.0	s	85		1979		5.8

Asheville, North Carolina	Asheville Regional Airport
---------------------------	----------------------------

			Tempera	itures	°F			Norr						Precip	itation in	inches						Relat midit		r.			Wind			thine	ŧ
		Normal	E					Base (e days B5°F			Wate	equivale	mt			s	inow, Ic	e pellet	5	Hour	Hour	Hour	Hour		thru 1963	Fast	est m	nile	üns	cover, tenths, sunset
Month	Deily meximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Yaar	Heating	Cooling	Normai	Maximum monthly	Year	Minimum monthly	Yeak	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	⊥ 07 .ocal	13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cov sunrise to sur
(a)				19	-	19					19		19	1	19		19		19		19	19	19	19	19		19	19		19	19
JFHAHJ	47.5 50.6 58.4 68.6 75.6 81.4	27.6 34.4 42.7 51.0	39.1 46.4 55.7 63.3	77 82 89 91	1977 1974 1972 1969	-2 9 24 29	1966 1967 1980 1973 1971 1966	874 725 577 283 114 23	0 0 0 61 167	3.48 3.60 5.13 3.84 4.19 4.20	7.02 9.86 7.26 8.83	1978 1982 1975 1979 1973 1972	0.45 0.44 1.92 0.25 1.72 2.12	1978 1982 1976 1970	2.95 3.47 5.13 3.06 4.95 3.54	1982 1968 1973 1973		1969 1969 1982 1979	11.7	1969	78 79 78 90	83 85 86 92	56 54 51 58	63	9.6 9.5 8.9 7.0		40 60 46 44 40	34 35 22 34	1975 1972 1969 1970 1971 1971	61 62 66 61	6.1 5.8 6.0 5.6 6.2 6.1
JANOND	84.0 83.5 77.9 68.7 58.6 5C.3	61.6 55.8	72.6	100 92 85 81	1983 1975	43 30 21 8	1967 1968 1967 1976 1970 1983	0 57 286 558 797	254 239 114 7 0	4.43 4.79 3.96 3.29 3.29 3.51	9.92 11.28 9.12 7.05 7.76 8.48	1967 1977 1971 1979	0.63 0.52 1.17 0.30 1.19 0.16	1981 1970 1978 1981	4.02 4.12 3.41 2.95 4.03 2.66	1967 1975 1977 1977	0.0 0.0 0.0 T 9.6 16.3	1977		1977 1968 1971	97 96 92 86	98 97 94 89	64 65 58 57	75 70	5.8 5.4 5.6 6.8 8.2 9.0		43 40 35 35 40 44	34 32 33 32	1966 1973 1980 1972 1974 1965	55 55 61 60	6.5 6.2 6.4 5.1 5.4 5.8
YR	67.1	\$3.8	55.5		AUG 1983	-7	DEC 1983	4294	842	47.72		AUG 1967		0EC 1965	5.13	MAR 1968		FE B 1969	16.3	DEC 1971	87	91	59	70	7.6		60		FEB 1972	60	5.9

Cape Hatteras, North Carolina Weather Service Building

			Tempera	itures	°F			Nori						Precip	itation ir	inches						Rela midit		n.			Wind			je.	zi.
		Normal				mes		Base (e daγs 65 °F			Water	oquivale	nt			s	now, Ic	e pellet	\$	Hour	Hour	Hour	Hour		thru 1963	Fag	test n	nile	ie sunshine	er, tenths, net
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Meximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	보 07 .ocal	13	19	Meen speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunset
(a)				26		26					26		26		26		26		26		26	26	26	26	26	6	13	13		21	26
JFH	52.6 53.5 58.8	37.6 37.7 43.3	45.1 45.6 51.1	76 79	1972 1971 1977	14 19	1982 1958 1967	617 543 437	0	4.72 4.11 3.97		1983 1983	1.75 1.42 0.98	1976 1967	5.00 2.92 2.91	1970 1982	4.4. 8.5	1962 1978 1960	4.4	1962 1978 1980	79 79	80 80	65 62	77	12.8 12.3	NN E Sh	44	SD4 ND2	1983 1973 1980	53 6 D	6.2 6.0 6.0
ĥ	67.2 74.1 80.5	51.1 59.7 67.5	59.2 66.9 74.0	88	1967 1962 1978	39	1972 1971 1966	106 37 D	12 96 270		7.10 11.44 10.80	1972	0.59 0.61 0.38	1962	5.6D 3.28 6.63	1958	0.0 0.0 0.0		0.0 0.0 0.0		86	82	66	79	12.2 11.2 10.8	SW	35	18	1983 1972 1972	61	5.4 6.1 6.3
J A S O	84.4 84.4 80.5 71.7	71.9 72.0 67.9 58.1	78.2 78.2 74.2 64.9	94 92	1969 1968 1978 1959	56 45	1972 1979 1970 1970	0 0 0 76	409 409 276 72	5.78	9.99 11.73 12.78 11.24	1976 1979	0.45 0.99 0.73 1.34	1983	5.53 8.11 5.46 7.67	1962 1979	0.0 D.0 0.0		0.0		88 85	86 84	69 67	83 80	10.3 9.7 10.6 11.4	SW NE	26 41 44	16 12	1982 1971 1971 1982	63 61	6.5 6.2 5.6 5.9
N D	63.6 56.4	48.3	56.0 48.7	81 77	1971 1982	22 12	1967 1983	276 510	6 D		14.63 8.63	1962	1.23 2.07	1973	7.59	1977	T 1	1970 1970	T	1970	60	82	64	78	11.1	NNE	35	29	1983 1972	56	5.4
YR	69.0	54.7	61.9		JUN 1978		JAN 1982	2682	1556	55.72		NOV 1962		UUN 1978	8.11	AUG 1962		MAR 1960		MAR 1980	83	82	66	79	11-4	SW	4.8	NOZ	MAR 1980	59	5.9

Charlotte, North Carolina Douglas Municipal Airport

			Temper	atures	°F			Nor						Precip	itation in	inches						Relat nidit		t.			Wind			erite	Ĕ
		Normal	Enumuiuim Diosected Altroom Al					Degre Base (Wate	equivale	ent			S	now, lo	e pellets		Hour	Hour	Hour	Hour		thru 1963	Fast	test m	nile	ŝ	cover, tenths, sunset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normai	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hr.	Ý eser	Maximum monthly	Year	Maximum in 24 hrs.	Year	01		i 3	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky co sunrise to su
(a)				44		44					44	1	44	1	44		44		94		23	23	23	23	34	14	30	30		33	34
JFHAHJ	50.3 53.6 61.6 72.1 79.1 85.2	30.7 32.1 39.1 48.4 57.2 64.7	40.5 42.9 50.4 60.3 68.2 75.0	81 90 93 100	1977 1945 1960 1941	5 4 24 32	1940 1958 1980 1960 1963 1972	760 619 459 155 50 0	0 7 14 149 304	3.80 3.81 4.83 3.27 3.64 3.57	7.59		0.74 1.58 0.30 0.11	1981 1978 1982 1976 1941 1954	3.57 2.92 3.83 3.20 3.67 3.77	1973 1977 1962 1975	14.9 19.3	1979 1960 1982	12.0	1969 1983	67 69 68 78	75 79 78	52 51 47 53	54 53 49 58	8.0 8.5 8.9 8.9 7.6 6.9	NE SW SW	56 54 49 53 48 57	5 W N W N W	1960 1958 1977 1958 1958 1958	60 63 69 69	
JASOND	88.3 87.6 81.7 71.7 61.7 52.6	68.7 68.2 62.3 49.6 39.7 32.6		133 104 98 85	1983	53 39 24 11	1961 1965 1967 1962 1950 1950	0 10 166 429 694	419 400 220 33 0	3.92 3.75 3.59 2.72 2.86 3.40	10.89 8.33 8.17	1948 1945	0.61 0.02 T 0.46	1983 1972 1954 1953 1973 1965		1978 1959 1976 1962		1968 1971	0.0 0.0 0.0 2.5 7.5	1968	84 84 80 76	90 87 83	58 58 53 53	66 68 66 62		S NE NNE SSW	59 54 47 47 57	N 10 N 10 N 10 N 10 N 10	1962 1954 1956 1960 1957 1954	70 67 68 61	6.2 5.8 5.8 4.7 5.3 5.3 5.9
YR	70.5	49.4	60.0	134	SEP 1954		JAN 1940	3342	1546	43.16	12.48	MAY 1975	т	0CT 1953	5.34	0CT 1976	19.3	MAR 1960	12.0	FEB 1969	76	83	54	61	7.5	SW	59	NW	JUL 1962	65	5.8

Greensboro, High Point, Winston-Salem AP, North Carolina

			Temper	atures	°F			Nor						Precip	itation in	inches	-					Relat midit		t.			Wind			2	<u>_</u>
		Norma	,		Extr	emes		Base	e daγs 65 °F			Wate	r equivale	mt			s	now, la	æ pellet	3	Hour	Hour	Hour	Hour		thru 1963	Fast	test n	nile	le sunshine	er, tenths, set
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Yaar	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Meximum in 24 hrs.	Year	01	도 D7 ocal 1	13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	8	Mean sky cover, sunrise to sunset
(a)				55		55					55		55		55		55		55		20	20	20	20	55	15	30	30	-	55	55
JFHAHJ	47.6 50.8 59.3 70.7 77.9 84.2	27.3 29.0 36.5 45.9 55.0 62.6	37.5 39.9 48.0 58.3 66.5 73.5	81 90 94 98	1975 1977 1945 1930 1941 1954	-4 5 21 32	1940 1936 1960 1943 1963 1977	853 703 533 215 73 0	0 6 14 120 259	3.51 3.37 3.88 3.16 3.37 3.93	7.04 8.76 6.19 8.35	1937 1929 1975 1936 1982 1965	0.66 0.73 1.21 0.55 0.37 0.32	1978 1967 1942 1936	3.06 3.00 3.07 2.70 3.11 4.91	1934 1932 1944 1978	16.3	1979	9.3 11.1	1960 1983	70 71 71	77 79 78 84	51	57 55 52 63	8.1 8.6 9.2 8.8 7.6 6.9	SW SW SW SW	43 51 54 42 61 56	4 5 4 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		52 57 60 64 65	6.3 6.0 6.0
J A S O N D	87.4 86.2 80.4 70.1 59.9 50.4	66.9 66.3 59.3 46.7 37.1 29.9		101 100 95	1932 1954 1954 1974	47 35 20 10	1933 1946 1942 1962 1970 1962	0 .0 12 221 495 769	378 350 159 17 0 0	4.19	12.35 12.53 13.26 9.60 7.72 6.44	1939 1947 1959	D.13 D.26 D.35	1972	7.49	1949 1947 1954 1962		1968 1930	0.0 0.0 0.0 5.0 14.3		89 88 84 77	91 88 83	59	71 72 72 65	6.5 6.3 6.6 7.1 7.5 7.7	S¥ NE NE SV	63 45 40 43 40	2 2 2 2 2 2 2	1932 1952 1934 1960 1955 1954	63 63 66 59	6.2 5.9 5.5 4.7 5.3 6.0
YR	68.7	46.9	57.9		JUL 1977		JAN 194 D	3874	1303	42.47		SEP 1947		SEP 1939		SEP 1947		JAN 1966		DEC 1930	80	84 !	55	64	7.6	sw	63	N	JUL 1932	61	5.8

Raleigh, North Carolina Raleigh-Durham Airport

			Temper	atures	۴F			Nor						Precip	itation ir	inches						Rela midi		et.			Wind			*	
		Normal	1		Extr	emes			e days 65°F			Wate	r equivale	ent			S	now, to	æ pellet	\$	Hour	Hour	Hour	Hour		thru 1963	Fas	test r	nile	le sunshii	er, tenths set
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Yber	Minimum monthly	Year	Maximum in 24 hrs.	¥ 88	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	⊥ 107 .ocal	13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunset
(a)				39		39		1			39		39		39		39		39		19	19	19	19	34	14	30	30		29	34
JFHAH JJA	50.1 52.8 61.0 72.3 79.0 85.2 88.2 87.1	29.1 30.3 37.7 46.5 55.3 62.6 67.1 66.8	39.6 41.6 49.3 59.5 67.2 73.9 77.7 77.0	84 92 95 97 104 105 101	1952 1983	5 11 23 31 38 48 48	1977 1971 1980 1972 1977 1977 1975 1965	787 655 496 181 53 0 0	0 9 16 121 270 394 372		6.10 7.67 9.38	1983 1983 1978 1974 1973	1.00	1953		1973 1983 1978 1957 1957 1952	14.4 17.2 14.0 1.8 0.0 0.0 0.0	1979	10.4		70 71 73 85 87 88	77 80 81 87 88 90	51 50 45 55 57 59	58 57 53 67 68 71	8.6 8.9 9.3 9.0 7.6 6.9 6.6	SW SW SW SW SW	41 40 44 40 54 39 69	22 32 14 20 33 23	1971 1966 1967 1961 1972 1977 1962	59 62 64 59 60 61	6.1 5.9 6.0 5.6 6.0 5.8 6.0
\$ 0	81.6	60.4 47.7	71.0 59.7		1954 1954		1983	9 187	189	3.29	12.94	1945	0.57	1954	5.16	1944	0.0		0.0			92	60 59	17	6.3		46		1969 1972		5.9
N D	61.8 52.7	38.1 31.2	50.D 42.0	88	1950 1976	11	1970 1983	450 713	23 0 0	2.73 2.87 3.14	8.22		0.44 0.61 0.25	1973		1954 1963 1958	0.0 2.6 10.6			1975	78	84	54 51 56	67	7.2	S¥	73 35 35	29 32	1954 1969 1968	61 60	5.D 5.2
YR	70.3	47.7	59.0		JUL 1952		JAN 1977	3531	1394	41.76	12.94	SEP 1945	0.23	APR 1976	5.20	AUG 1955		FEB 1979		FEB 1979			ĺ			sw	73		0CT 1954		5.7

Wilmington, North Carolina New Hanover County Airport

			Temper	atures	°F			Nor						Precip	itation ir	inches					hu	Rela midi		t.			Wind			뿓	<u>.</u>
		Normal			Extr	emes	r		e days 65 °F		r	Wate	r equivale	ent	-		5	inow, la	æ pellet	is	Hour	Hour	Hour	Hour		thru 1963	Fas	test n	nile	le sunshine	er, tenths, set
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record	Year	Heating	Cooling	Norma	Meximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	<u>т</u> 07 .ocal	13	10	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunset
(a)				32		32					32		32		32	-	32		32		20	z 0	20	20	32	12	28	28		32	32
	55.9 58.1 64.8 74.3 80.9 86.1 89.3	35.3 36.6 43.3 51.8 60.4 67.1 71.3	45.6 47.4 54.1 63.1 70.7 76.6 80.3		1975 1962 1974 1967 1953 1952	11 9 30 40 48	1981 1958 1980 1983 1981 1983	607 498 350 94 10 0	6 5 12 37 187 348		8.74 8.09 8.21 9.12 12.87	1962	0.93 0.33 1.13 1.36	1976 1967 1957 1983 1954	3.31 3.52 4.95 7.73	1983 1960 1961 1963 1966	12.5	1965 1973 1980	11.7	1980	76 79 79 87	77 81	52 52 48 56	65 67 64 71	9.2 10.0 10.3 10.5 9.4 8.6	NW 55W 55W 55W	57 66 56 56 46 54	SW NE NE	1953 1956 1956 1958 1958 1958	60 63 70 66	6.1 5.9 5.8 5.4 5.9 6.2
Ă	88.6	70.8	79.7				1972	0	474 456 :	7.44	15.12	1966	1.65	1961 1968	5.63		0.0		0.0			86			8.0		42		1966		6.4
5	83.9	65.7	74.8	98	1975	44	1981	Ō	294	5.71	15.51	1955		1958		1981	0.0		0.0				64 63		7.5	SW N	72		1955 1958	62	6.2
S I	75.2 66.8	53.7	64.5 55.4		1954 1974		1962	94	78	2.97	9.81			1953	4.34		0.0		0.0			88			8.2		82		1954		5.0
D	59.1	37.2	48.2		1982		1970 1983	295 521	7 0	3.19 3.43	7.87	1972 1982		1973 1955	4.82 3.88		4.0	1976 1970	т 4.0	1976 1970	82	85	53	76	8.2	Ň	59 47	N	1962 1953	65	5.0
¥R	73.6	53.1	63.4	134	JUN 1952		JAN 1981	2469	1904	53.35		SEP 1955	0.17	0CT 1953		SEP 1958	12.5	FEB 1973	11.7	FE8 1973	84	84	57	73	8.9	SSW	88	H	SEP 1958	63	5.8

Charleston, South Carolina Municipal Airport

			Tempera	tures	°F			Nor						Precip	itation in	inches					hu	Rela midi		st.			Wind			e ine	32
		Normai			Extre	emes		Degre Base (Water	equivale	mt			s	now, Ic	e pellet	\$	Hour	Hour	Hour	Hour		thru 1963	Fas	test n	nile		cover, tenths, sunset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	, Kener	Heating	Cooling	Normal	Maximum monthly	Ytsar	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	т 07 .оса	13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky co sunrise to su
(a)				41		41					41		41		41		41		41		41	41	41	41	34	14	8	8		24	34
JFHA	58.8 61.2 68.0 76.0	36.9 38.4 45.3 52.5	47.9 49.8 56.7 64.3	86 90 93	1950 1962 1974 1981	12 15 29	1982 1973 1980 1944	543 434 286 69	13 9 29 48	3.33 3.37 4.38 2.58	6.35 11.11 9.50	1958	0.99	1947 1963 1972	6.63	1944 1959 1958	7.1 2.0 0.0	1977 1973 1969	5.9 2.0 0.0	1966 1973 1969	78 81 83	81 83 84	51 51 49	66	10.0 10.1 9.8	NNE SSW SSW	4 D 37 37 36	29 29 19	1983	62 67 71	6.2 5.9 6.0 5.4
H J	82.9 87.0	61.4 68.0	72.2 77.6		1953 1944		1963 1972	6 0	229 378	4.41 6.54		1957 1973		1944 1970	6.23 10.10		0.0		0.0 0.0		88 89			71 74	8.7 8.4		32 40		1978 1981		6.0
J A S	89.4 88.8 84.6 76.8	71.6 71.2 66.7 54.7	80.5 80.0 75.7 65.8	132 99		56 42	1952 1979 1967 1976	0 0 0 76	481 465 371 101	6.50	18.46 16.99 17.31 9.12	1974 1945	1.76 0.73 0.53 0.08	1980	5 • 81 5 • 77 8 • 8% 5 • 77	1964 1945	0.0		0.0 0.0 0.0 0.0		91 90		63 62		7.9 7.4 7.9 8.1	SW NNE	36 32 38 30	03 11	1983 1981 1979 1976		
N D	68.7 61.4	44.6	56.7 50.0	88	1961 1972	15	1950 1962	262 471	13	2.18	7.35		0.48	1966		1969	Т	1950 1980	T	1950 1980	84	86	52	76	8.2		28 39	18	1983 1975	63	
YR	75.3	54.2	64.8	103	JUN 1944		0EC 1962	2147	2093	51.59	27.24	JUN 1973	0.01	APR 1972	10.10	JUN 1973	7.1	FEB 1973	5.9	FEB 1973	85	86	56	73	8.7	NNE	40	03	JUN 1981	66	5.9

Columbia, South Carolina Columbia Metropolitan Airport

			Tempera	tures	°F			Nor	nai					Precipi	tation in	inches						Relat midit		t.			Wind			e jue	Ę
		Normai			Extre	mes		Degree Base 6	days 5°F			Water	equivale	nt			Si	now, lo	e pellet	•	Hour	Hour	Hour	Hour		thru 1963	Fast	test m	nile	ble sunshine	cover, tenths, sunset
monu	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01	т 07 _0Cal	13	19	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky co sunrise to su
.)				36		36					36		36		36		36		36		17	17	17	17	35	14	30	30		30	35
J	56.2	33.2	44.7		1975		1970	637	8	4.38		1978		1981	2.82			1982 1973		1982	79	82	55	65	7.1		46 90		1964 1966		6.1
F	59.5	34.6	47.1		1977		1973 1980	508 346	6 2 D	3.99		1961	0.87	1976	3.69			1980		1980			49		8.3		60	27	1954	64	5.9
71	67.1 77.0	41.9	54.5 63.8		1974 1970		1983	87	51	3.59		1979	0.81			1956	0.0		0.0		77	84	44		8.3		40		1961		5.3
21	83.8	59.1			1953		1963	22	223	3.85		1967		1951		1967	0.0		0.0				50			S₩	46		1958		3 5.7
J	89.2	66.1	77.7			45	1977	0	381	4.45	14.81	1973	1.26	1955	5.44	1973	0.0		0.0		87	87	53	62	6.6	SW	40	23	1957	61	1 5.8
			81.0				1951	a	496	6 76	13.87	1	0.57	1977	5.81	1959	0.0		0.0		87	89	55	68	6.4	SW	40	35	1965		6 . 1
чI	91.9 91.0	70+1	80.2				1969	0 .	471		16.72		1.02			1949	0.0		0.0		90		57		5.9	SW	. 44		1961		7 5.6
2	85.5	63.9	74.8				1967	o.	297	4.23	8.78	1953	0.39		6.23		0.0		0.0		91		57		6.1		38		1959		5 5.7
õ	76.5	50.3	63.4				1952	123	74		12.09		T	1963	5.46		0.0		0.0				51		6.2		27		1968		7 4.7
N	67.1	40.6	53.9		1961		1970	339	6	2.51		1957		1973		1976	T	1976	T	1976	83	88		70	6.4		35		1967		5 4.9
D	58.8	34.7	46.7		1978	4	1958	567	0	3.50	8.54	1981	0.32	1955	3.18	1970	9.1	1958	8.8	1958	60	83	54	59	6.7	828	32	28	1415	60	1
					AUG		MAR					AUG		DCT		AUG		FEB		FEB			_			1			MAR		
R	75.3	51.2	63.3	107	1983	4	1980	2629	2033	49.12	16.72	1949	T	1963	7.66	1949	16.0	1973	15.7	1 9 7 3	83	87	52	64	6.9	28	6 D	27	1954	1 92	5 5 • 6

Greer, South Carolina Greenville-Spartanburg Airport

			Tempera	tures	۴F			Norr	nal					Precipi	itation in	inches						Relati nidity		.			Wind			je je	ž,
		Normal			Extr	9177 05		Degree Base 6				Water	equivale	nt			S	now, Ic	e pellet	5	Hour	Hour	Hour	Hour		thru 1963	Fast	test m	nile	ible sunshine	cover, tenths,
	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	01		13		Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky co
b				21		21					21		21		21		21		21		21	21	21	21	21	1	21	21		21	2
JFRAHJ	51.0 54.5 62.5 72.6 79.7 85.4	31.2 32.6 39.4 48.3 56.9 64.2	41.1 43.6 51.0 60.5 68.3 74.8	79 88 91 97	1975 1982 1967 1980 1967 1981	8 11 25 33	1966 1967 1980 1983 1971 1972	741 599 442 154 41 0	0 8 19 143 297			1971 1980 1964 1972	0.53 1.98 0.69 1.09	1967 1976	3.30 2.98 4.45 3.76 3.58 4.80	1973 1963 1963 1972	12.3	1966 1979 1983 1983	8.2 9.3	1965 1979 1983 1983	69 69 70 80	74	51 50 48 53	57 55 52 61	7.3 7.9 8.0 7.7 6.7 6.3	NE SW SW NE	44 44 38 44 36 35	5 W N S W S W	1967 1966 1963 1970 1967 1969	60 64 66 60	5. 5. 5. 5.
	88.2 87.5 81.7 72.2 62.1 53.5	68.2 67.4 61.7 49.1 39.6 33.2	78.2 77.5 71.7 60.7 50.9 43.4	103 96 88 85	1983 1983 1975 1981 1974 1971	52 36 25 12	1979 1968 1967 1976 1970 1983	0 7 162 423 670	409 388 208 29 0	3.66 4.35	12.52 7.51 11.65 10.24 5.31 8.45	1967 1975 1964 1972	1.16 0.27 0.24 1.34	1963 1978	3.89 4.49 6.21 4.53 2.83 3.00	1967 1973 1977 1964	0.0 0.0 0.0 0.0 1.9 11.4	1968 1971	0.0 0.0 0.9 1.9 11.4	1968 1971	86 86 81 76	80	58 59 53 52	69 72 70 65	5.7 5.5 5.8 6.3 6.5 7.2	NE SW	52 34 31 31 34 47	N NE	1964 1974	61 61 66 60	5 · · · · · · · · · · · · · · · · · · ·
	70.9	49.3			AUG		JAN 1966	3239	1501			JUL		0CT 1974		SEP 1973		FEB 1979		DEC 1971	78	81	54	63	6.7	NE	52	NE	JUL 1966	61	5.

Abilene, Texas Municipal Airport

			Temper	atures	°F			Nor	mai e days					Precip	itation in	inches						Rela midi		n.			Wind			8	
		Normal			Extr	emes	,		65 °F		T	Wate	r equival	ent			s	inow, la	a pellet	3	Hour	Hour	Hour	Hour		thru 1963		test r	nile	le sunshine	er, tenths,
Month	Daily meximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Yoar	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00		12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover,
(a)				44		44							44	1	44		44		44		20	20	2 O	20	39	15	40	40		35	
J F M A H J	55.5 60.3 68.6 77.6 84.1 91.8	31.2 35.5 42.6 52.8 60.8 69.0	43.3 47.9 55.6 65.2 72.5 80.5	90 97 99 137 109	1980	1 7 25 36 47	1947 1951 1943 1973 1979 1964	673 479 321 98 11 0	0 29 104 244 465	0.97 0.96 1.08 2.35 3.25 2.52	5.16 6.8D 13.19	1940 1979 1966 1957	0.04			1940 1977 1957 1969	7.3	1973 1956 1970 1980	4.5	1970 1980	66 60 63 70	73 70 72 79	54 48 47 52	45 39 41 45	12.0 12.8 14.2 14.1 13.2 13.1	S S SSE ccF	73	NW S S N	1955 1956 1953 1951 1949 1951	62 65 69 70 69	5.0
JASOND	95.4 94.5 87.1 77.6 64.8 58.4	72.7 71.7 64.9 54.1 42.0 34.3	84.1 83.1 76.0 65.9 53.4 46.4	139 136 103 92 89	1943 1952 1979 1980 1955	55 35 28 14 2	1940 1961 1942 1957 1976 1983	0 10 91 361 577	592 561 340 119 13 0		11.03	1969 1974 1981 1968	T T 0.00 D.00	1970 1943 1956 1952 1949 1972	6.70 6.08 2.43	1978 1961 1981	8.1	1980 1968 1983		1980 1976	61 68 67 69	73 78 75 74	47 53 51 53	41 49 48 52	11.0 10.5 10.5 11.1 11.7 12.8	SSE SSE SSE S	51 55 58 50	NU Su NE N	1946 1954 1954 1954 1971 1950 1950	76 69 72 69	4.4 4.5 4.5 4.7 5.1
R	76.3	52.6	64.5		JUL 1978		JAN 1947	2621	2467	23.26	13.19	MAY 1957	0.00	DCT 1952	6.70	SEP 1961	13.5	JAN 1973	7.5	JAN 1973	65	74	50	45	12.2	SSE	10,9		JUN 1951	71	5.0

Austin, Texas Municipal Airport

			Temper	atures	۴F			Nor						Precip	vitation ir	inches	-					Rela midit					Wind				Γ.
		Normal	r		Extr	emes			e days 65 °F			Wate	r equival	ent			5	Snow, Id	e pellet	3						thru 1963	Fas	test r	nile	e sunshine	r, tenths, et
Month	Daily maximum	Daily minimum	Monthly	Record highest		Record lowest	+	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Meximum in 24 hrs.	Year		D6 ocal			Meen speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunset
(a)				¥2		42	1				4Z	1	42		42		42		42		22	22	Z 2	22	42	15	38	38		42	42
J F M A H J	59.4 64.1 71.7 79.0 84.7 91.6	38.8 42.2 49.3 58.3 65.1 71.5	49.1 53.2 60.5 68.7 74.9 81.6	93 98 98 99	1971 1954 1971 1982 1967 1980	7 18 35 43	1949 1951 1948 1973 1954 1970	505 347 203 41 0 0	12 16 63 152 307 498	1.60 2.49 1.68 3.11 4.19 3.06	9.93 9.98	1958 1983			3.44 3.73 2.69 3.86 5.66 5.66 5.50	1958 1980 1942 1979		1944 1966 1965	6.0		72 71 76	79 79 83 88	59 56 58 60	52 49 54 58	9.8 10.2 10.9 10.6 9.7 9.3	S S SSE SSE	47 57 44 44 49 49	N HE NE	1962 1947 1957 1957 1972 1972	52 55 53 57	6.3 6.1 6.1 6.3 6.2 5.2
JANOND	95.4 95.3 89.3 80.8 69.2 62.8	73.9 73.7 69.1 58.7 48.1 41.4	84.7 84.5 79.2 69.8 58.7 52.1	106 103 97 91 90	1953 1956 1979 1951 1955	61 41 32 20 10	1970 1967 1942 1957 1976 1983	0 0 37 221 406	611 605 426 186 32 6	2.24	8.11 12.31	1974 1942 1960 1946	0.00 0.00 0.07 T T T	1952		1945 1973 1960 1974	0.0 0.0 0.0 2.0 T		0.0 0.0 0.0 2.0 T		73 78 75 76	86 83 82	51 56 54 57	54 58	8.4 7.9 7.9 8.1 9-D 9.2	5 5 5	43 53 45 47 48 49	SE NW NE NW	1969 1969 1961 1967 1951 1956	76 75 67 65 57	4.7 4.7 5.0 4.7 5.3 5.9
YR	78.6	57.5	68.1		JUL 1954		JAN 1949	1760	2914	31.50		JUN 1981	0.00	UUL 1962		0CT 1960		JAN 1944		JAN 1944	75	83	56	53	9.3	s	57		FEB 1947	61	5.5

Brownsville, Texas International Airport

			Tempe	ratur es	۴	-		Nor						Precip	itation in	n inches						Relati midity		t.			Wind			2	
		Normal	,		Extr	emes		Base	ne days 65°F			Wate	r equival	ent			s	inow, Ic	e pellet	3	5	5	5	5		thru 1963	Fas	itest n	nile	le sunshine	er, tenths,
Month	Daily meximum	Daily minimum	Monthly	Record	Year	Record	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	1 1	D6 .ocal t	2		mean speed	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover,
(a)				45		45					44		44		44		44		44		17	17	7	17	41	14	36	36		41	4
JF	69.7 72.5	50.8 53.0	6D.3 62.8		1971 1982	19	1962 1951	216 135	70 73	1.25	5.11 10.25		Ţ	1956 1954	2.95	1958	Ţ	1967	Ţ	1967	86	87							1953		6.
мf	77.5	59.5			1983		1980	53	164	0.50	4.27		;	1971	4.98			1973	- ÷	1973 1943		87 6	1	68 1	Z.1	SSE	55		1965	49	6.
A	83.2	66.6	74.9	120	1953		1980	Ū	297	1.57	6.62		l i	1983	5.20		0.0	1943	0.0	1943		87 3					47		1950		6.
M	87.0	71.3	79.2			52	1970	0	440	2.15	9.12		i i	1978	4.56		0.0		0.0		64	89 6		60 1		20	52		1979		6.
J	90.5	74.7	82.6	101	1942	60	1975	0	528		13.06		0.01	1955	8.18		0.0		0.0			89					52				6.
J	92.6	75.6	84.1			68	1937	٥	592	1.51	9.43	1976	Ţ	1982	4.25	1976	0.0		0.0	4	85	90 1	5	62 1	1.6		37		1972		4.
A	92.8	75.4	84.1		1962	63	1967	0	592	2.83	9.56			1974	5.48		0.0		0.0			90				SE	57		1945		5
S	89.8	73.1	81.4	104	1947		1942	0	492	5.24	19.26			1959		1967	0.0	1	0.0	1	86		1		9.4		69		1967		5
0	84.4	66.1	75.3		1977		1939	0	322	3.54	17.12	1958	0.34	1961		1954	0.0		0.0		85	an I	9	60	9.5		47		1960		
	77.0	58.3	67.7		1969		1976	55	136	1.44	6.26	1957		1949		1957 .	T	1976	Ť					71 1			42		1961		5
٥	71.9	52.6	62.3	94	1977	20	1983	150	66	1.16	9.45			1969		1940	Ť	1966	Ť			86 6	4	73 1	0.8	NNW	45		1950	43	6
	82.4		/		SEP		JAN					SEP		APR		SEP		NOV		NOV									SEP		
rr	04.4	64.8	73.6	1134	1341	1 1 9	1962	609	3772	25+44	19.26	1967	T	1983	12.19	1967	T	1976	т	1976	85	88 6		68 1	1.6	SE	69	NE	1967	61	5

			Tempera	atures	°F			Nor						Precip	itation in	inches						Rela: midit		rt.			Wind			e i c	a di
		Normal			Extr	smes		Degra Base (Wate	equivale	int			s	now, Ic	e pellet	\$	Hour	Hour	Hour	Hour		thru 1963	Fast	test n	nile	le sunshine	cover, tenths,
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record	Year	Heating	Cooling	Normal	Meximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Ma ximum monthly	Year	Maximum in 24 hrs.	Year	00		12	18	Meen speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cov
(a)				45		45					45	1	45		41		45		45		19	19	19	19	41	15	7	7		41	
J	66.5	46.1	56.3		1971	14	1962	310	40	1.63	10.78	1958	0.03	1971	6.38	1958	1.2	1940	1.1	1940	85	88	69	72	12.1	SSE	37	32	1979	46	6.1
F	69.9	48.7	59.3		1940	18	1951	209	50	1.55	8.11	1982	T	1976	4.85	1982	1.1	1973	1.1	1973	84	88	65	66	12.9	SSE	+1	15	1981	52	6.0
м	76.1	55.7	65.9	99	1976		1980	97	125	0.84	4.80	1974	T	1971	2.67		T	1962	т	1962	84	87	62	65	14.1	SSE	38	14	1983		6.
	82.1	63.9	73.0				1980	7	247	1.99		1956	Т	1983	7.19		0.0		0.0						14.4		40	32	1983	57	6.1
н	86.7	69.5	78.1		1973		1970	0	406	3.05		1968	T 1	1961	4.65		0.0		0.0						12.9		44		1982		6.1
J	91.2	74.1	82.7	101	1980	58	1975	0	531	3.36	13.35	1973	0.03	1980	5.65	1978	0.0		0.0		89	93	63	68	11.9	SE	31	12	1983	74	5.1
J	94.2	75.6	84.9				1967	0	617		11.92		0.00		4.61		0.0		0.0		87	92	58	63	11.5	SSE	46	02	1980	82	: 4.9
	94.1	75.8	85.0				1967	0	620		14.79		0.10		8.92		0.0		0.0	1					10.9		55		1980		4.1
S	90.1	72.8	81.5				1942	0	495		20.33			1981	8.76		0.0		0.0		86	91	63	68	10.2	SE	36		1979		5.1
0	83.9	64.1	74.0		1950		1964	11	290		11.02		0.00		7.25		0.0		0.0						10.1		32		1980		4.
N	75.1	54.9	65.0		1949		1969	116	116	1.55	8.53		T	1949	3.44			1979	T,						11.4		39		1983		1 5.0
"	69.3	48.8	59.1	91	1977	1 14	1983	220	37	1.40	7.80	1960	0.01	1950	3.86	1960	т	1983	T	1983	83	85	64	70	11.3	SSE	38	18	1982	47	6.1
					JUL		DEC		_	_		SEP		JUL		AUG		JAN		FEB						1			AUG		
R	81.6	62.5	72.1	1134	1939	14	1983	970	3574	30.18	20.33	1967	0.00	1957	8.92	1950	1.2	1940	1.1	1973	86	90	63	68	12.0	SSE	55	11	1980	63	5.1

.

Dallas-Fort Worth, Texas Regional Airport

			Tempera	rtures	°F			Nor						Precip	itation ir	inches						Rela midit		t.		_	Wind			je	ž
		Normai			Extre	SITTINGS			e days 85 °F			Wate	r equivale	ent			s	inow, ic	æ pellet	s	Hour	Hour	Hour	Hour		thru 1963	Fas	test r	nile	ole sunshine	rer, tenths, 1set
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthły	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00	<u>т</u> 06 _008	12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunse
(a)				30		30					30	1	30		30		30		30		20	20	20	20	30	10	30	30		5	30
J.F. E. 4.E. J	54.D 59.1 67.2 76.8 84.4 93.2	33.9 37.8 44.9 55.0 62.9 70.8	44.0 48.5 56.1 65.9 73.7 82.0	88 96 95 99	1969 1959 1974 1972 1980 1983	9 15 30 41	1964 1978 1980 1973 1978 1964	651 469 313 85 0 0	0 7 112 275 510		6.20 6.39 12.19 13.66	1982	0.15	1972 1983 1977	2.39 4.06 4.39 4.55 4.86 3.11	1965 1977 1957 1965	13.5	1964 1978 1962		1978 1962	72 71 74 79	79 80 83 87	59 57 58 61	54 51 54 58	11.1 11.8 13.0 12.7 11.0 10.7	\$ \$ \$ \$	53 51 55 55 55 55 52	36 29 32 14	1979 1962 1954 1970 1955 1955	54 59 63 64	6.2 5.8 5.9 6.1 5.8 4.8
J < S 0 2 0	97.8 97.3 89.7 79.5 66.2 58.1	74.7 73.7 67.5 56.3 44.9 37.4	86.3 85.5 78.6 67.9 55.6 47.8	108 105 102 59	1964	56 45 29 20	1972 1967 1983 1980 1959 1983	D D 56 300 533	660 636 408 146 18 0	1.76 3.31	9.52 14.18 6.23	1970 1964	T	1965 1980 1983 1975 1970 1981	5.91	1976 1965 1959 1964		1976 1963		1976 1963	68 75 73 73	80	51 57 54 56	45 54 55 58	9.4 9.0 9.3 9.6 10.6 11.1	s s s	65 73 53 44 50 53	36 11 27 34	1961 1959 1961 1957 1957 1957	77 76 64 61	4.2 4.2 4.6 5.1 5.5
۲R	76.9	55.0	66.0	113	JUN 1980	•	JAN 1964	2407	2809	29.45	14.18	0CT 1981	т	AUG 1980	5.91	0 C T 1 9 5 9		FEB 1978	12.1	J AN 1964	73	82	56	53	10.8	s	73	36	AUG 1959	66	5.2

Galveston, Texas Post Office Building

			Temper	atures	°F			Nor						Precip	itation in	inches						Rela midit		t.			Wind			ŝ	ź
		Normal			Extre	emes		Degre Base	edays 65°F			Wate	equivale	nt			s	now, Ic	e pellet	s	Hour	Hour	Hour	Hour		thru 1963	Fast	test m	nile	ole sunshine	cover, tenths, sunset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Your	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00	Ŭ D6 .ocal	12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cor sunrise to sur
(a)				113		113					113		113		113		113		113		44	96	66	96	93		112	112		92	
J	59.2	47.9	53.6		1969		1886	376 282	23 18	2.96	10.39	1899	0.02	1909	5.38				2.5	1973					11.6		53 60	S	1915 1927	48 51	
H	66.4	56.5	61.4		1879		1980	160	48	2.10	9.49	1973		1953	8.10		T	1932	T	1932					11.9		50	SE	1952	55	
A [73.3	64.9	69.1		1953	38	1938	19	142	2.62	11.04	1904		1887	9.23	1904	0.0		0.0				75	60	12.1		68		1983	60	1
M	79.8	71.6	75.7		1911	52	1954	0	332	3.30	10.79	1975	T	1978	7.71	1975	0.0		0.0		83	84	73	77	11.5		66	- H	1959	67	1
J	85.1	77.2	81.2	99	1918	57	1903	D	486	3.48	15.49	1919	Ŧ	1907	12.56	1961	0.0		0.0		80	81	70	73	10.7		62	SË	1921	75	
J	87.3	79.1	83.2				1910	D	564			1900			14.35		0.0		0.0			81					68	NW	1943		
	87.5	78.8	83.2		1924		1966	0	564		19.08	1915				1981	0.0		0.0	ŀ				73	9.4		91	E	1915	70	
S	84.6	75.4	80.0		1927		1942	0	450		26.01				11.65		0.0		0.0	ł					10.1		100		1900	68	1
	68.3	57.6	63.0		1952 1886		1925	10	248			1871			14.10		0.0	l	0.0	1	75				10.3	1	66		1949 1950	72	
D	62.3	51.2	56.8		1918		1911	267	13		10.28		0.03		9.01		0.0	1924	0.0	1924					11.2		54 50			60 49	
					JUL		FEB					SEP		AUG		JUL		FEB		FEB									SEP		
YR	74.4	64.8	69.6				1899	1253	2967	40.24	26.01		0.00		4 . 35				15.4		81	83	72	76	11.0		100	NE		63	1

Houston, Texas Intercontinental Airport

			Temper	atures	°F		_	Nor	mai e days					Precip	itation Ir	inches					hu	Reis Imidi		n.			Wind			hine	ź
		Normal			Extra	emes			65 °F			Wate	r equivale	ent			5	šnow, Ic	e pellet	\$	Hour	Hour	۹ſ	٩r		thru 1963	Fast	est m	nike	E ns	er, tenths,
Month	Daity maximum	Daily minimum	Monthly	Record highest	Year	Record	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00		12		Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cov sunrise to sun
(a)				14		14					14		14		14		14		14		14	14	14	14	14	15	14	14		14	14
JFMAH	61.9 65.7 72.1 79.0 85.1	40.8 43.2 49.8 58.3 64.7	51.4 54.5 61.0 68.7 74.9	85 90	1975 1982 1974 1981 1978	20 22 31	1982 1981 1980 1973 1978	442 314 175 32 0	20 20 51 143 307			1976	0.43	1976 1971	2.39 1.65 7.47 8.16 5.11	1980 1972	2.0 2.8 0.0 0.0	1973	2.0 1.4 0.0 0.0	1973 1980	84 84 64 88	88 88 90		61 61 63		SSE SSE SSE	32 35 35 45	29 10 14	1978 1974 1979 1978 1983	50 47 51	7.0 6.4 6.9 6.7 6.2
J	90.9	70.2	80.6	133	1980	52	1970	O	46B		13.46		0.26		6.61		0.0		0.0		88					SSE	45		1973		5.5
J A S O	93.6 93.1 88.7 81.9	72.5 72.1 68.1 57.5	83.1 82.6 78.4 69.7	137 100	1980	62 48	1972 1970 1975 1976	0 0 0 36	561 546 402 181	3.33 3.66 4.93 3.67	8.10 9.42 11.35 9.31	1983	1.42 1.40 0.80 0.05	1975			0.0		0.0		87 90 91	94	60 62	65 70	6.8 6.0 6.8	SSE SSE	46 51 37	08 05	1969 1983 1982	64 62	5.7 5.7 5.6
N D	71.6	48.6 42.7	60.1 54.0	89	1978 1978	19	1976 1983	201 349	54 8	3.38	8.91	1982 1971	1.54	1970	3.62	1970 1981 1971	T 0.0	1979	0.0 T 0.0	1979	90 87 84	90		74	6.6 7.8 8.1	SSE	35 37 35	33	1973 1972 1973	53	5.0
YR	79.1	57.4	68.3		AUG 1980		DEC 1983	1549	2761	44.77		HAY 1970	0.05	ОСТ 1978	8.15	APR 1976		FEB 1973	2.0	J AN 1 97 3	87	91	60	66	7.8	SSE	51		AUG 1983	56	6.0

Port Arthur, Texas Jefferson County Airport

			Temper	atures	۴			Nor						Precip	itation i	n inches						Rela					Wind	_	_		
		Normal	1		Extr	emes	r		e days 65°F			Wate	r equival	ent			5	Snow, Ic	æ pellet	ts	Hour	[Hour			thru 1963	Fast	test n	nile	le sunshine	er, tenths, set
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year	00		12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunset
(a) J	61.7	42.1	51.9	81	1982 1962		1962	431	25	4.18	30 9.57		30	1971	30 4.92	1961	30 3.0	1	30	1973		23		- 1	30	10	25	25		26	
H A H	71.8 78.5 85.0	51.0 59.4 66.1	61.4 69.0 75.6	87 93 97	1974 1955 1977	25 36 46	1981 1980 1980 1954	306 167 23 0	23 56 143 329	2.93 4.05	11.76 9.35 15.30 11.39	1979 1973	0.06	1954 1955 1965 1978	5.05 6.04 10.09	1965 1979 1973 1983	4.4 1.4 0.0	1960 1968	4.4 1.4 0.0	1960 1968	85 86 87	88 88 90	63 62 64	7D 69 71	11.6 12.0 12.1	5 5 5	50 62 66 60	SE S₩	1957 1969 1964 1966	52 52	7.0 6.3 6.6 6.7
J	90.5 92.5 92.2	71.8 73.7 73.3	81.2 83.1 82.8	103	1980	61	1975 1967	0 0	486 561	3.96	14.05	1961 1959	0.76	1980	10.20	1961	0.0		0.0 ().0		91	92 93 94	63	70	10.4	s		NW	1971 1957	69	6.1 5.3
S O N	88.6 81.5 71.4	69.8 58.9 49.8	79.2 70.2 60.6	100 95		45 35	1967 1967 1957 1976	0 0 33 190	552 426 194 58	6.13 3.63	17.26 21.96 15.09	1980	0.98	1968 1953 1963	8.45 17.16 8.06	1966 1980 1970	0.0				92 90	93	66 65	72 74	7.7 7.4 8.5 8.8	S NE	66 73 56 65	E SW	1963 1968 1968 1956	63 62	5.9 5.8 5.5 4.7
D	65.0	44.4	54.7	84	1978 AUG	15	1983 JAN	327	8	4.55	10.84 17.98	1977 1982 SEP	0.15		9.98	1961 1982 SEP	т	1976 1983		1976 1983	87	89	611	75	10.2	N		NE	1963 1953	57	5.6
YR	78.7	58.7	68.7	137	1962	14	1962	1477	2861	52.79	21.96					1980		FEB 1960	4.4	FEB 1960	88	91	64	72	10.0	s	74		MAY 1971	58	6.0

San Angelo, Texas Mathis Field

			Tempe	ratures	۴F			Nor	mai se days					Precip	itation i	n inches	·					Relat					Wind			*	
		Norma			Extr	emes			65°F			Wate	r equival	ent			s	inow, Ic	e pellet	4	5	5	5	5	t 1	hru 963	Faste	est m	ile	e sunshine	r, tenths, et
Month	Daily maximum	Daily minimum	Monthly	Record	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Y BE	Maximum monthly	Year	Maximum in 24 hrs.	Year	1 I	HOT 06	1 Z	Man mart	т.р.h.	direction	kpeed T.d.m.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunset
(a)				36		36					36		. 36		36		36		36		23	23	23	23	34	14	35	35			35
J F H A M J J A	58.7 63.3 71.5 80.2 86.3 93.4 96.5 95.4	32.2 36.1 43.4 53.4 61.5 69.3 72.0 71.2	45.5 49.7 57.5 66.8 73.9 81.4 84.3 83.3	90 97 103 107 110 111 121 107	1960 1969 1960 1960	1 8 25 35 48 58 55	1982 1951 1980 1973 1967 1964 1968 1961	605 428 274 73 5 0 0	C 42 127 281 492 598 567	0.64 0.84 0.79 1.75 2.52 1.88 1.22 1.85	2.86 5.00 5.10 7.10 6.01 7.21	1961 1958 1953 1977 1957 1982 1959 1971	T 0.10 0.26 0.07 T	1967 1974 1972 1967 1962 1956 1970 1959	2.49 1.92 4.65 3.32 2.56 2.86 2.95 3.00	1958 1953 1971 1975 1961	5.8	1978 1973 1962 1980	4.1 3.1	1962 1980	68 66 62 69 66 59	75 75 70 74 81 80 76	52 49 43 44 49 49	8 10 2 10 36 12 37 12 37 12 11 11 11	1.3 S 1.9 S 1.2 S 1.2 S 1.2 S 1.2 S 1.2 S	4 5 4 5 4	44 48 58 75 60 57 40	27 29 27 28 02 02 02	1960 1960 1961 1969 1963 1955 1981		5.5 5.3 5.2 5.3 4.3 4.3
	88.D 79.2	65.U 54.0	76.5	137	1952 1951		1981	0	350		11.00	1980	T	1983	6.25		0.0		0.0			83	15		•2 S			02 1 34 1	1949		4.6
Ň	67.2	42.0	54.6		1951		1980 1979	75 326	125 14	2.05		1981 1968		1952	5.11		0.0		0.0		74	82	52	0 9	4 S				1960		4.3
D	61.2	34.7	48.0		1954		1983	527	6	0.64	2.70			1950 1973	2.16 2.02	1975 1980		1968 1967		1968 1967	73 70	8D 77	52 9	2 9	∿9 S •0 ₩				1958		4.6
YR	78.4	52.9	65.7		JUL 1960		DEC 1983	2313	2596	18.19	11.00	SEP 1980		JAN 1967		SEP 1980		JAN 1978		JAN 1978	67	78	9	4 10	• 5 S	Ì	75		APR 1969		۰.8

			Tempera	tures	°F			Nor						Precip	itation ir	inches						Rela midi		ct.			Wind			hine	r,
		Normal			Extre	mes		Base (e days 85 °F			Water	equivale	ent			s	inow, Ic	e pellet	5	5	5	5	5		thru 1963	Fas	test r	nile	Suns	ar, tenths, set
Month	Daily maximum #	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrs.	Year				18 e)	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunset
(a)				42		42					41		41		41		41		*1		41	41	41	41	41	15	7	7		41	41
JFH	61.7 66.3 73.7	39.0 42.4 49.8 58.8	50.4 54.3 61.8 69.6	92 100		6 19	1949 1951 1980 1983	463 319 178	10 19 78	1.55	8.52	1965 1957	0.04 0.03 0.03	1954 1961	2.36	1965 1945	3.5 T	1949 1966 1978	3.5 T	1949 1966 1978	75 72	80 79	57 54	52 47	9.2 9.9 10.6	NE SE	35 35 35	01 36	1979 1981 1980	52 57	6.3 6.1 6.2
ίΗJ	80.3 85.5 91.8	65.5 72.0	75.5 81.9	101	1967	44	1963 1954 1964	28 0 0	166 326 507		11.24	1957 1972 1973	0.14 0.17 0.01	1961	6.53	1977 1972 1951	0.0 0.0 0.0		0.0 0.0 0.0		81	86	59	55	10.7 10.3 10.2	SE	39 43 35	0²	1979 1983 1978	55	6.4 6.4 5.5
J A S O	94.9 94.6 89.3 81.5	74.3 73.7 69.4 58.9	84.6 84.2 79.4 70.2	136 132	1954 1962 1951 1979	61 41	1967 1966 1942 1980	0 0 41	608 595 432 202		11.14	1942 1974 1946 1942	T 0.00 0.06	1944 1952 1947 1952		1950 1973	0.0		0.0 0.0 0.0		74 78	86		46 52	8.5	SE	48 35 42 31	07	1977	73	5.1 4.9 5.2
N D	70.7 64.6	48.2 41.4	59.5 53.0	91 90	1962 1955	21 9	1976 1983	199 378	34	2.34	6.01 4.51	1977 1965	Ť 0.03	1966 1950	4 .87 2 .89	1977 1944	0.3	1964	0•3 0•2	1957 1964	76	81	55	56	8.9	N	37 30	33	1983 1983	55	5.4
YR	79.6	57.8	68.7		AUG 1962		JAN 1949	1606	2983	29.13		SEP 1946	0.00	AUG 1952		SEP 1973	4.7	JAN 1949		J AN 1 949	76	83	55	52	9.4	SE	48	0 ⁹	JUL 1979	60	5.7

Victoria, Texas Victoria Regional Airport

			Tempera	itures	°F			Nor						Precip	itation ir	inches					hu	Rela		ct.			Wind			2	
		Normal			Extre	mes		Degree Base (e days 35 °F			Water	equivale	mt			s	now, lo	a pellet	3	Hour	Hour	Ę	5		thru 1963	Pe	ak G	ust	le sunshine	er, tenths, set
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record lowest	Year	Heating	Cooling	Normai	Meximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Yteer	Maximum monthly	Year	Maximum in 24 hrs.	Year	00	ビード 106 Loca	12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	Pct. of possible	Mean sky cover, sunrise to sunset
(a)				23	1	23					23		23		23		23		23		19	22	22	22	22		21	Z1			22
J F	63.6 67.1	43.1 45.9	53.4	88 90	1971 1962		1982 1981	386 268	27 30	1.87	5.21	1979 1969	0.02	1971 1974	3.65			1973 1973	1.2	1973 1973	84 83	86	65 60		10.6		55 54	-	1963 1981		7.0
м	73.8	52.8	63.3		1971		1980	140	87	1.34		1970	D.18	1971	2.60	1983	0.0		0.0		82	86	58	60	11.7		59	N	1970	l l	6.9
- Â	80.2 85.6	61.5 67.7	70.9		1963 1964		1980	18	195 363	2.61	9.43			1983	8.57		0.0		0.0		85 87	86		64	11.9		6D 63		1969	1	7.2
J	90.8	73.1	82.0				1979	Ō	510		12.68		T	1980	9.30		0.0		0.0					64			62		1971	ĺ	5.7
J	93.7	75.2	84.5				1967	٥	605		10.47		0.07		4.22		0.0		0.0					61	8.8		99	-	1963		5.7
	93.7	74.7	84.2		1962 1982		1967	0	595	3.33	7.30			1965 1982		1964	0.0		0.0		86			62	8.3		67		1963		5.8
8	82.8	61.0	71.9		1962		1980	20	453 234			1978		1982	8.51		0.0		0.0			91 90	61	67	8.4		54		1976	i i	5.7
Ň	73.0	51.5	62.3		1963		1976	150	69	2.2	8.68			1981	6.63			1976	0.2	1976				68	9.7		60 48		1983	i i	5.0
D	66.7	45.4	56.1		1964		1983	291	16	2.14		1975		1972	6.12			1969	Ť	1969	84	86	62	69	10.2		52				6.8
YR	80.0	60.2	70.1		AUG 1962		DEC 1983	1273	3184	36.90		SEP 1978	т	JUN 1980	9.30	JUN 1977		JAN 1973	1.2	JAN 1973	85	89	60	65	10.0		99	-	JUL 1963		6.2

Waco, Texas Madison Cooper Airport

•			Tempera	itures	°F			Norr						Precip	itation in	inches						Rela midi		rt.			Wind			hine	ž
		Normal			Extre	mes		Degree Base 6	e days 85 °F			Water	equivale	ent			s	now, Ic	e pellet	8	Hour	Hour	Hour	Hour		thru 1963	Fast	est m	nile	sible suns	cover, tenths, sumset
Month	Daily maximum	Daily minimum	Monthly	Record highest	Year	Record	Year	Heating	Cooling	Normal	Maximum monthly	Year	Minimum monthly	Year	Maximum in 24 hrs.	Year	Maximum monthly	Year	Maximum in 24 hrt.	Year	00	т D6 _oca	12	18	Mean speed m.p.h.	Prevailing direction	Speed m.p.h.	Direction	Year	f pos	Mean sky cor sunrise to sur
(a)				41		41					41		41		41		41		۹1		20	20	20	20	34	14	35	35			38
L	56.6	35.7	46.2	88	1971	-5	1949	591	8	1.69	5.83	1961	0.03	1971	2.24	1961	7.0	1949	7.0	1949	77	83	64	6Z	11.7	s	49	32	1952		6.3
F	61.6	39.4	50.5		1954		1949	415	9	2.04	4.55		0.17		3.03			1966		1966							58	36	1954	1	6.0
м	69.5	46.6	58.1			15	1948	257	43	1.99	6.84	1945	0.04	1956	3.07	1946			1.0	1962							65		1952	1	5.9
	77.6	56.5		101			1975	71	134		13.37		0.12			1957	0.0		0.0						13.0		62		1953	1	6.2
м	84.2	64.2	74.2		1949		1981	0	288		15.00			1945		1953	0.0		0.0						11.9		60		1952		6.0
L	92.1	71.5	81.9	139	1980	52	1964	٥	507	2.58	12.06	1961	0.27	1953	4.21	1947	0.0		0.0		74	84	54	50	11.6	s	69	09	1961		4.9
J	96.5	75.2	85.9	176	1957	61	197D	0	648	1.78	8.58	1971	т	1963	4.49	1973	0.0		0.0		67	8D	48	43	10.7	s	60	36	1953	ł	4.3
Ā	96.7	74.5	85.6				1967	õ	639	1.95		1974	İi	1952	4.80		0.0		0.0			81		45			60	05	1951		4.3
s	89.7	68.6	79.2		1977	40	1983	ō	426	3.18		1970	0.00	1956		1957	0.0		0.0		75	85	55	53	9.5	s	60	32	1952	1	4.7
0	80.3	57.2	68+8	101	1979	29	1980	46	164	3.06	9.36	1973	0.00	1952	5.72	1974	0.0		0.0		75	83	55	56	9.9	S I	52		1960		4.6
N	67.9	46.1	57.0		1948		1976	265	25	2.24		1952	0.13			1952	0.8	1980		1980							62		1953		5.2
D	60.3	38.5	49.5	91	1955	7	1983	481	D	1.92	7.03	1960	0.04	1950	3.11	1945	2.0	1946	2.0	1946	76	82	61	62	11.2	s	52	32	1954		5.7
					AUG		JAN					MAY		SEP		MAY		JAN		J AN									JUN	ļ	
YR	77.8	56.2	67.0	112	1969	-5	1949	2126	2891	30.95	15.00	1965	0.00	1956	7.18	1953	7.0	1949	7.0	1949	74	83	57	55	11.3	S	69	09	1961	1	5.3