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EXECUTIVE SUMMARY

Previous studies have shown that residential air-conditioning system oversizing is a common
practice that has both energy and comfort penalties. A Florida Power and Light / Florida Solar
Energy Center (FSEC) study conducted in the mid-1990s involving over 350 homes showed that
50% of residential AC systems are oversized by 120% or more (James et al. 1997). The same
study found oversizing AC systems by 1.0 to 1.2 times Manual J resulted in 3.7% higher cooling
energy use and oversizing systems 1.2 to 1.5 times Manual J resulted in 9.3% higher cooling
energy use.

The goal of Task 3.2, Benefits of Proper Sizing of the State Technologies Advancement
Collaborative (STAC) project, was to demonstrate the benefits of proper air conditioner sizing to
contractors, customers and utilities. Field tests were conducted in four Florida case study homes.
Testing the benefits of properly-sized AC systems was accomplished via a pre/post monitoring
study. Indoor air conditions and AC energy use in the four project homes were monitored during
the summer of 2004 with the original, oversized AC systems. Then the AC systems were
changed out with properly-sized systems (according to a strict interpretation of the Air
Conditioning Contractors of America Manual J procedure) and conditions and energy-use
monitoring continued with the new systems in place.

While three 2004 Florida hurricanes significantly
limited the post-change out monitoring, useful
comparisons in three of the four project homes
were still possible. Analysis of the pre- and post-
change out monitored data showed mixed energy
savings and relative humidity results. In a
Jacksonville project house, AC energy use was
approximately the same and indoor relative
humidity (RH) levels were slightly higher with
the properly-sized AC system compared to the
original oversized system. In a second house,
located on the east central Florida coast in Merritt
Island (Figure E-1), the properly-sized AC [
system provided similar indoor RH levels as the |
oversized system but increased energy use. In a
third house, located in Lakeland, the properly-
sized system modestly lowered energy use but
also increased indoor RH levels compared with
the original system. In a fourth project house,
located near the southwest Florida coast in North Port, the very limited data available suggests
higher RH levels with the properly-sized system with inconclusive energy use results. Project
results suggest potentially significant utility coincident peak demand savings from the properly-
sized systems.

AC system at Merritt Island house showing
footprint of original oversized system on the
concrete pad

While a full investigation of the reasons for the mixed results is beyond the scope of this project,
there are several identified factors. The longer run times of the smaller air-conditioning systems
compared to the oversized systems mean increased duct air leakage penalties and since cold air is
flowing through the ducts for longer periods, heat conduction through the ductwork is also



increased. Also, since the ductwork size was not reduced when the properly-sized systems were
installed, the same duct surface area that was present for the oversized system now has cold air
flowing through it for longer periods. The relatively large duct work may also explain why the
properly-sized AC systems all had higher airflow rates per ton of cooling than the original
systems, which may in turn partially explain higher post-change out RH levels. Variable speed
air handlers can provide better control of evaporator coil airflow and may produce better results,
but were not included in this study.
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INTRODUCTION

Previous studies have shown that residential air-conditioning system oversizing is a common
practice that has both energy and comfort penalties. A Florida Power and Light / Florida Solar
Energy Center (FSEC) study involving over 350 homes found that 50% of the study’s AC
systems were oversized by 120% or more (James et al. 1997). The same study found oversizing
AC systems by 1.0 to 1.2 times Manual J resulted in 3.7% higher cooling energy use and
oversizing systems 1.2 to 1.5 times Manual J resulted in 9.3% higher cooling energy use.

The goal of Task 3.2, Benefits of Proper Sizing, was to demonstrate the benefits of proper air
conditioner sizing to contractors, customers and utilities. Field tests were conducted in case study
homes; four homes were tested in Florida by FSEC and additional homes were tested in
Wisconsin by the Energy Center of Wisconsin (ECW). The Wisconsin tests will be reported
separately.

Project Homes

A search for Florida sizing study project homes began in April 2004 via an internal Florida Solar
Energy Center email and by contacting personnel at several Florida electric utility companies,
asking them to forward information on the study to other employees. The criteria specified
homes:

between 1,600 and 2,400 square feet with typical Florida construction

built between 1999 and 2003 (occupied at least 1 year by present owners)

owned by the current occupants (not rented)

having one AC system for entire house (heat pump, electric resistance or gas heat)
having "typical™ occupancy (e.g. 2-6 occupants) and use.

To pre-qualify homes for the study, after getting an indication of interest in the study from the
homeowners, energy audits were conducted at a total of five homes. The audits included
measurements/verifications of building components (wall and floor construction types, window
orientations, types, areas and overhangs, ceiling insulation levels, etc.) along with building and
duct airtightness measurements. A detailed ACCA Manual J 8" edition load calculation was then
completed for each home (using a “strict” interpretation of Manual J) to determine if/how much
the present AC system was oversized. Summaries of these sizing calculations are provided in
Appendix A. Four of the five homes that were audited had sufficiently oversized AC systems (>
25%) to qualify for the study, so no additional pre-qualifications were necessary.
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All four project homes were identified by early-July
2004. The homes are located in Jacksonville,
Merritt Island, Lakeland and North Port, providing
locations throughout peninsular Florida from the
northeast to the southwest. The four project home
locations are shown in Figure 1.

Air conditioner capacity reductions for the four
project homes ranged from 13,200 to 17,000 Btu/hr
or an average of 31%. In each case, the replacement
AC system selected was from the same
manufacturer as the original system, and matched
as closely as possible to the original system (e.g.,
model line and SEER). Table 1 provides a summary
of the original and properly-sized (downsized) air

Jacksonville O

Merritt Island

Lakeland O

North Port

O

O

Figure 1. Project home locations

conditioner capacity and efficiency characteristics for each house. ARI performance information
for the original and properly-sized systems at each project house is provided in Appendix B.

Table 1. Original and New (Properly Sized) AC System Characteristics

House Original AC System New AC System
Site Conditioned Manual J i i
Floor Area Load | Capacity | orprpiiopp | CAPACILY | qprp ) iopE
(Sq. ft) (Btu/hr) (Btu/hr) (Btu/hr)
Jacksonville 2,255 28,418 47,000 12.05/7.3 33,000 12.05/75
Merritt Isl. 2,250 30,206 44,500 12.75/ NA 29,400 12.50 / NA
Lakeland 2,518 38,607 58,500 11.60 / NA 42,000 12.00 / NA
Northport 2,012 23,147 41,000 13.15/8.65 27,800 13.75/8.25
MONITORING

To compare performance of the original and downsized AC
systems, air conditions and power use at each home were
monitored on a 15-minute basis (2-minute basis for a subset

of the measurements). Monitoring included:

Air conditioner power use (total, condenser and air
handler as shown in Figure 2),

Air temperature and relative humidity at the
thermostat (see Figure 3),

Supply register air temperature (2-minute data; see
Figure 4),

Air temperatures entering and leaving coil (2-minute
data), and

Outdoor air temperature, relative humidity and
horizontal surface solar radiation (see Figure 5).

2
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In addition to the above, partway through the study period, monitoring of condensate removal
and AC compressor on/off time was also added.

Monitoring was designed to include three phases: pre-tune up, post-tune up and finally post AC
change out. Pre-tune up monitoring provided data on the existing AC systems as they were
operating before the project technician inspected the systems and tuned them up. These were all
relatively new systems, so the only maintenance required was adding refrigerant in three cases.
Pre-tune up monitoring began in June 2004 at one house and in July 2004 at the other three
houses.

Post-tune up monitoring began in July 2004 for three houses
and in early-August 2004 for the fourth house. Both the
post-tune up and post-change out monitoring phases were
significantly affected by hurricanes Charley, Frances and
Jeanne that summer. Data collection time was lost due to the
hurricanes for a number of reasons including having to
remove the weather station at each house at least once,
boarding up windows at three of the four houses, inclement
weather and electric power outages

Figure 3. Recorded thermostat AC changeouts were also
temperature and humidity delayed due to the
hurricanes because of lost
work days and significantly increased AC contractor work
loads repairing storm-damaged systems. Three change outs
were performed in September 2004 (16", 17" and 24™), with
the final change out completed in early-October 2004. In three
cases a performance check was completed at the time of the
e AC change out while in the
fourth home the performance
check was performed five days
later.

Figure 4. Recorded supply air
temperature

Due to the hurricane postponed and shortened post-monitoring
period, a letter was sent to all four participants requesting that
they allow approximately one month of additional monitoring
during the summer of 2005. Due to budget constraints, summer
2005 monitoring was limited to the Merritt Island and Lakeland
houses. The decision to use these two houses was made because
j . of the proximity of the houses to our office location, cooperation

,:,gure 5project weather of the homeowners, and the sale of the Jacksonville house in
station at the Merritt Island site ~ March 2005.

! For such future projects, because of the adverse impact of the late season installs, we would target all the AC
change outs for the first two weeks in July with pre-change out data collection beginning in May.
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DATA ANALYSIS

Lakeland

For the Lakeland project house (Figure 6), the original
air conditioner was changed out on September 16,
2004. The original unit (Figure 7) had a nominal ARI
95°F outdoor/80°F indoor/ 67°F wet bulb condition
cooling capacity of 58,500 Btu/hr. The Manual J 8"
Edition estimated size for this 2,518 square foot house
was 38,600 Btu/hr and thus a system with a nominal
capacity of 42,000 Btu/hr was installed. Both the air
handler and outdoor unit were changed out. The
original system had a nameplate SEER of 11.6 Btu/W-
hr; the new downsized system had a similar value of
12.0 Btu/W-hr. Tested total duct leakage (at 25
pascals, pre-retrofit) at this house was 273 cubic feet per minute (Qny: = 0.11) and leakage to
outside was 86 cubic feet per minute (Qnyy:= 0.03).

Figure 6. Project house in Lakeland,

The original unit was oversized by approximately 52% —
a typical condition based on previous survey data (Vieira
et al. 1996). One key factor in the system change out,
however, was the fact that single speed air handlers were
used. These air handlers had multiple speed taps for the
| permanent split capacitor (PSC) motors. In each case,
| | however, we found it impossible to match the nominal
CFM/ton of cooling capacity in the pre-retrofit system to
|| that in the post system. An Energy Conservatory flow
¥l plate was used to precisely measure pre- and post- air
Figure 7. Checking performance of flow rates. At this project home, the oversized original
existing AC system in Lakeland, FL system had an evaporator air flow of 1,660 cfm or 341
cfm/ton. With the post-retrofit downsized system, even
choosing the lowest speed tap, the flow was 1,490 cfm or 426 cfm/ton. The difference in air flow
per ton of cooling capacity was largest at this site compared to the other three test sites. As
shown in other evaluations, such a disparity in evaporator coil flow rate can be expected to
signizficantly affect coil temperatures and humidity removal — particularly at the higher flow
rate.

Detailed data were taken on the systems pre and post as documented in this report. Critical to the
system evaluation, this included outdoor conditions (temperature, relative humidity and solar
radiation) and air conditioner electric power. Comfort conditions included indoor temperatures
and relative humidity. Cooling system supply air temperatures and condensate removal
measurements were also made. In general, data were taken every fifteen minutes although some
data were collected every two minutes.

% Future projects of a like nature would be well advised to use variable speed air handlers in such a sizing study so
that this important variable could be controlled to provide similar conditions pre and post AC change out.
4



Unfortunately for the project, the hurricanes of 2004 played havoc with the data analysis. This
included Hurricanes Charley and Frances which affected the data prior to change out on August
13-18" inclusive and September 1%-15™. Thus, these data were lost for the pre-change out period
and were removed from the available data stream. Similarly, just days after the installation of the
new AC system, Hurricane Jeanne struck leading to loss of data for the dates from September
24" through October 1%, These data were removed prior to the analysis, but the piecemeal nature
of the resulting “cleaned” data stream made it necessary to carefully match up weather data in
the pre and post periods so that reasonable conclusions could be reached relative to performance.
Fortunately, measured data were obtained in the post period for the new air-conditioning system
in August 2005 which substantially improved the available data set.

To estimate the impact of the new AC systems, three previously-utilized techniques were used:

1. Comparison of long term pre and post periods with similar weather match.

2. Comparison of selected pre and post days with a close statistical match of weather
conditions.

3. Linear regression of daily energy use against daily inside to outside temperature
difference.

Lakeland Data Analysis
Figure 8 shows the average AC power and interior air relative humidity over the summer of 2004

when the AC was changed out. Note that maximum AC power drops after the retrofit, but
interior relative humidity increases.

3500 65

& 15minute AC Watts
Interior Relative Humidity

3000

& L 60
2500 i

gﬁo gﬁ% @5@%%
% M%e@ﬁ@g

2000 ] 2
@o%% ° Lk 8 SO | 55

1500 +

AC Power (Watts)

1000
50

Interior Relative Humidity

500 48

220 230 240 250 260 270 280 290 300

Julian Date (July 30 - October 29, 2004)

Figure 8. Time series data for AC power and interior relative humidity at the Lakeland site

Figure 9 shows a summary of the fundamental data from the project when evaluated over the
longest periods of time with good weather match. The pre data includes the entire cleaned data
set with all 15-minute data from July 29 - September 16, 2004 and comprises 2521 fifteen
minute observations — 26 days of data. The post data consists of the cleaned data from September
22, 2004 through August 25" of 2005 with 3,980 observations — 41 days of data. The averages in
the two periods are summarized below.

5



70 - . ~ 2000
6 3—*— Interior RH (pre): avg= 48.6% lSumme."' L
— —v —  Interior RH (post): Avg= 52.2% 1" peak | F 1800
66 1@ AC (pre)= 18.2 KWhiday ! : F
64 3 B A AC (post): 16.6 kWh/day | F 1600
= S
z =
= @
T ®)
g <
2 5
£ I
Hour of Day (Standard Time)
Figure 9. Lakeland site cooling load profile and interior humidity
performance, pre and post AC retrofit matched weather.
Ambient Air Temperature Pre 80.0°F; Post 80.1°F
Table 2. Summary of Lakeland Data Prior to Retrofit
Variable Obs Mean Std. Dev. Min. Max.
AC (kWh/day) 2,521 18.1 26.5 0 72.0
Ambient Dry-bulb Temp. (F) 2,521 80.1 6.5 70.6 98.4
Ambient Dewpoint Temp. (F) 2,521 75.9 2.3 70.2 83.2
Insolation (W/m=2) 2,395 190.9 281.8 0.6 11144
Interior Temp. (F) 2,521 77.1 0.9 73.1 78.6
Interior RH (%) 2,521 48.6 1.4 44.1 55.2
Condensate (0z) 2,521 5.49 6.8 0.0 41.9
Table 3. Summary of Lakeland Post-Retrofit Data
Variable Obs Mean Std. Dev. Min. Max.
AC (kWh/day) 3,980 16.6 21.6 0 56.3
Ambient Dry-bulb Temp. (F) 3,980 80.0 7.9 60.5 102.3
Ambient Dewpoint Temp. (F) 3,188 72.3 3.6 60.2 80.3
Insolation (W/m=2) 3,980 200.8 297.1 0.6 1079. 4
Interior Temp. (F) 3,978 76.9 0.9 73.5 85.6
Interior RH (%) 3,978 52.3 1.3 47.4 62.6
Condensate (02) 3,980 7.3 9.3 0 54.2

The data show that the weather match in the two periods is quite good. The average outdoor air
dry-bulb temperature is within 0.1°F for the two aggregate periods. Solar irradiance was similar
with a variation of 10 W/m? on average (+5%). The ambient dewpoints were somewhat lower in
the post period, indicating less outdoor moisture — not surprising given the hurricanes which
saturated Central Florida in the summer of 2004.




Lakeland Energy Savings

The data summarized in the Tables 2 and 3 and Figure 9 reveal that the average air conditioning
electric consumption (air handler, compressor and condenser fan) was 18.2 kWh/day in the pre
period and 16.6 kWh/day in the post — a modest energy savings of about 9%, somewhat higher
than the 3% that would be suggested by the difference in SEER. The aggregate plot (Figure 9)
includes the full data set pre and post, less the removed data compromised by the hurricanes
during summer. Note that the original AC system shows greater cycling than the new downsized
system.

Figure 10 shows an analysis of all the days pre and post with the daily measured air conditioning
electric consumption regressed against the recorded interior to exterior temperature difference.
Although scatter is readily apparent, the slope term of the regression terms are identical, but with
a change in the intercept term. When evaluated at a 3°F temperature difference (to approximate a
typical summer day where the average outdoor temperature is 80°F and the interior is maintained
at an average of 77°F), the regression estimates that space cooling electric consumption is lower
with the new AC system by about 8%.
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Figure 10. Regression of daily AC use pre and post against site temperature difference

Figure 11 shows an evaluation of two near-design days selected to yield very close weather in
the pre and post periods. Here we selected data from August 22, 2004 — a very hot day, and
compared that against data for October 3 of the same year. Note that the maximum temperatures
for the two days are 96°F and 94°F, respectively as compared with the Manual J 8" Edition
design day of 91°F for Lakeland. Interior temperatures on the two days were quite comparable.
Thus, the selected day is hotter than the typical design day. The relative match of selected
weather parameters is shown below in Table 4.
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Figure 11. Weather on matched days pre and post for the Lakeland site

Table 4. Comparative Weather Conditions on Pre and Post Day for Matched Day Analysis

Pre, August 22, 2004

Variable Obs Mean Std. Dev. Min. Max.
Ambient Dry-bulb Temp. (F) 96 79.6 8.2 70.6 96.1
Ambient Dewpoint Temp. (F) 96 74.1 2.3 70.5 79.6
Insolation (W/m=2) 96 241.2 327.6 0.6 926.9
Interior Temp. (F) 96 77.1 0.9 74.6 78.5
Interior RH (%) 96 49.4 0.8 47.2 51.7
Condensate (0z) 96 39.1 48.1 0 215.0
AC Power (Watts) 96 820.6 1162.5 0 2956
Post, October 3, 2004

Variable Obs Mean Std. Dev. Min. Max.
Ambient Dry-bulb Temp. (F) 96 79.8 8.4 68.4 94.1
Ambient Dewpoint Temp. (F) 96 71.5 1.7 68.5 76.6
Insolation (W/m=2) 96 271.1 298.2 0.6 823.1
Interior Temp. (F) 96 77.1 1.0 74.8 78.4
Interior RH (%) 96 53.3 0.8 51.5 54.8
Condensate (02) 96 55.2 70.4 1 339
AC Power (Watts) 96 711.5 940.4 0 2312

Three plots (Figures 12a, b, and ¢) show how the temperature, relative humidity, AC power and
supply air temperature varied during the comparative days. Note that similar to the other
analytical methods, the data shows a savings in AC power of about 13% (19.7 kWh/day vs. 17.1
kWh/day), albeit with worse relative humidity control. Note, however, that the supply air
temperature for the new system with the higher coil air flow per unit capacity was greater by
about 1°F. The runtime of the air-conditioning system was about 7.3 hours per day for the new
system versus 6.7 hours per day for the original — an increase in runtime of 9% — less than
expected given the ratio in the nominal capacity of the original and new equipment (58,500
Btu/hr vs. 42,000 Btu/hr). It should be noted, however, that with the greater coil air flow, the

sensible capacity of the new equipment is almost likely greater than its nominal ARI rating.
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Figure 12a. Indoor air conditions comparison for the Lakeland site
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Figure 12c. Supply air temperature comparison for the Lakeland site
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We conclude from the three analysis methods that the new downsized system saved between 8
and 13% of daily space cooling energy use. This is higher than would be expected from the
difference in SEER (3%) between the two systems.

Impacts on Relative Humidity and Moisture Removal

From a substantial body of previous work, we know that better equipment sizing should result in
positive impacts to interior relative humidity control as short cycling reduces the latent capacity
of cooling equipment (Shirey, Henderson and Raustad 2006).

Unfortunately, the data from the Lakeland site revealed that the new air conditioner, with its
higher evaporator air flow per unit cooling capacity, did a worse job at controlling interior
moisture levels. The measured interior relative humidity was 3.6% higher with the properly-sized
air conditioner. While it would be convenient to attribute this slightly higher interior humidity
level to the higher coil air flow, the higher measured condensate removal in the post period and
pre and post dew points suggest that somehow the moisture load was much greater with the new
machine. Note that dew points were lower in the post-monitoring period by over three degrees.

If a higher evaporator temperature and lower outdoor dewpoints were reducing the moisture
being removed by the air conditioner, then we would expect to see lower moisture removal rates.
In fact, we find just the opposite as shown in Figure 13. Here we see that the new air conditioner
actually removed an average of 1.4 additional gallons of water each day after the unit was
changed out. Given the lower outdoor dewpoint, this means that somehow an increased moisture
load was being placed on the air conditioner. A likely explanation is that with the greater runtime
of the new air-conditioning system, return side duct leakage and leakage from the air handler is
placing additional load on the AC system. Indeed, a study done during the project to estimate the
impact of reducing AC oversizing using the EnergyGauge USA simulation software suggested
that most — if not all — of the benefit of right-sizing would be lost due to duct losses from
conduction and induced air infiltration. This seems all the more likely given the fact that the air
handler in the Lakeland house is in the attic space. Although the existing duct system would
operate under lower pressure across the existing leakage, this influence was likely outmatched by
increased fan runtime, particularly with return leaks in a hostile environment (attic air handler).

16 | S

] 1Summer | [

] © Condensate (pre)=4.1gals/day | peak |
= 141 _— + —  Condensate (post)= 5.5 galsiday : : r 65
£ ]——o—— |Interior RH (pre): 48.6% o J \ 1 [
w g0 1w Interior RH (post): 52.2% q r oy
L r‘]{qJ}\] “hl T Leo z
. A [ £
= ] | ™ L g
:;.10: o ¥/ ¢ f"[o]ol\ﬂ;vﬂ r E
P PN UAEA NI
@ 8 ] L 4 1 o | ﬁo # f__ 55 :2:
: SRR S W
§ o T T iy
§ _MMW‘&V' Tt
2 43R LAl ) | o 4B E

] N#? I | A
< ] Oo i, jo‘]OOo 1 | s 45

4 W . |
N ¢ i | i
0l 1 ! 40

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of Day (Standard Time)
Figure 13. Lakeland site condensate profile and interior humidity performance

pre and post AC retrofit matched weather.
Outdoor Dewpoint Temperature, Pre 75.9°F; Post 72.3°F
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Since previous FSEC research shows that the average air handler in Florida homes leaks 70-80
cfm during operation (Cummings et al. 2003), the air handler is drawing in additional outdoor air
during the extended runtimes with the right-sized system. This provides a satisfactory
explanation for the fact that interior moisture removal rates were greater with the new system in
spite of lower outdoor moisture conditions and higher evaporator coil air flow rates. With the
properly-sized system, the longer runtimes relate to greater volumes of attic air being drawn into
the air handler which results in the greater observed condensate removal. What is not as obvious
is that the longer runtimes also are necessarily associated with greater heat gains from the duct
system.

Merritt Island

For the Merritt Island house (Figure 14), the
original air conditioner was changed out on
September 24, 2004. The original unit had a
nominal ARI 95°F outdoor/80°F indoor/67°F wet
bulb condition cooling capacity of 44,500 Btu/hr.
The Manual J 8" Edition estimated size for the
cooling system for this 2,250 ft* home was 30,200
Btu/hr and thus a system with a nominal capacity of
29,400 Btu/hr was installed. Both the air handler
and outdoor unit were changed out. The air handler
was located in the garage (Figure 15). The original
system had a nameplate SEER of 12.75Btu/W-hr;
the new downsized system had a similar value of
12.5 Btu/W-hr. Tested total duct leakage (at 25 pascals, pre-retrofit) at this house was 178 cubic
feet per minute (Qn=0.08) and leakage to outside was 87 cubic feet per minute (Qny,=0.04).

Figure 14. Project house in Merritt Island, FL

According to Manual J, the original unit was oversized by
approximately 47%. As in the other retrofits, a single speed air
handlers was used. This air handler had multiple speed taps for the
permanent split capacitor (PSC) motor. However, as with the
Lakeland change out, we found it impossible to match the nominal
CFM/ton of cooling capacity in the pre-retrofit system to that in
the post system. The oversized system had an evaporator air flow
of 1,330 cfm or 359 cfm/ton. With the post retrofit system, even
choosing the lowest speed tap, the flow was 910 cfm or 372
cfm/ton. Thus, the relative coil air flow was about 4% higher post
retrofit, but well within the typical recommendation for air flow
for single speed systems (350 to 400 cfm/ton).

Figure 15. New air handler is Detailed 15-minute data were taken on the systems pre and post.
installed at the Merritt Island sitt Unfortunately, hardware problems resulted in the post retrofit
condensate data being lost. As at the other project sites, the

hurricanes of 2004 substantially reduced the available data prior to the AC change outs. This
included Hurricanes Charley and Frances which affected the data prior to change out on August
13-18th inclusive and September 1%-15". Thus, these data were lost for the pre-change out
period and were removed from the available data stream. Similarly, just days after the
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installation of the new system, Hurricane Jeanne struck leading to loss of data for the dates from
24"-28™ September. These data were removed prior to the analysis, but the piecemeal nature of
the data stream made it necessary to carefully match up
weather data in the pre and post periods so that
reasonable conclusions could be reached relative to
performance.

Fortunately, additional post-change out data was obtained
for the new downsized air-conditioning system in August
2005 which substantially improved the available data set.
Even here, we had to improvise to work past
instrumentation hardware problems (Figure 16). In
August 2005, the outdoor unit power measurement
equipment failed, although we found that air handler fan
power and outdoor air temperature could be used to quite
accurately estimate the missing compressor power data by regressing these two parameters
against measured compressor power from 2004 which was available for the new system. For this
particular system we estimated the outdoor unit compressor power for the missing data as:

Figure 16. Tune-up and commissioning
of new AC system in Merritt Island

Compresgor-Watts =5.1313 (Fan Power) + 10.136 (Outdoor Temperature) -816.74
R°=0.9951

To estimate the power use and conditions impacts of the new, properly sized AC system, we
used the same three previously-utilized techniques:

1. Comparison of long term pre and post periods with similar weather match.

2. Comparison of selected pre and post days with closely matched weather conditions.

3. Linear regression of daily energy use against daily inside to outside temperature
difference.

Merritt Island Data Analysis
Figure 17 shows the average AC power and interior relative humidity over the summer of 2004

when the AC was changed out. Note that maximum AC power drops after the retrofit, but
interior relative humidity increases slightly.
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Figure 17. Time Series for AC power and interior relative humidity at the Merritt Island site

Figure 18 shows a summary of the fundamental data from the project when evaluated over the
longest periods of time with good weather match. The pre data includes the entire cleaned data
set with all 15-minute data from July 23 - August 31, 2004 and comprises 3456 fifteen-minute
observations — 36 days of data. The post data consists of the cleaned data from September 28,
2004 through October 15, 2004 and July 16-31st of 2005 with 3,200 observations — 33 days of

data. The averages from the two long-term periods are summarized below.
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Figure 18. Merritt Island site cooling load profile and interior humidity

performance pre and post AC retrofit matched weather.
Ambient Air Temp.; Pre 81.4°F; Post 81.1°F
Indoor Temp.; Pre 78.7°F, Post 78.9°F
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Table 5. Summary of Merritt Island Data Prior to Retrofit

Variable Obs Mean Std. Dev. Min. Max.
AC (kWh/day) 3455 214 23.1 0 92.8
Ambient Dry-bulb Temp. (F) 3456 81.4 5.0 72.8 94.5
Ambient Dewpoint Temp. (F) 3456 76.6 1.9 68.6 83.1
Insolation (W/m=2) 3456 200.5 289.4 0.6 1160.6
Interior Temp. (F) 3456 78.7 0.5 77.6 84.0
Interior RH (%) 3456 50.6 1.7 43.1 68.2
Table 6. Summary of Merritt Island Post-Retrofit Data
Variable Obs Mean Std. Dev. Min. Max.
AC (kWh/day) 3200 23.1 23.3 0 71.1
Ambient Dry-bulb Temp. (F) 3200 81.1 5.8 66.9 97.1
Ambient Dewpoint Temp. (F) 3200 74.6 4.2 49.7 81.6
Insolation (W/m=2) 3200 210.6 299.0 0.6 1125.6
Interior Temp. (F) 3200 78.9 1.0 76.9 81.7
Interior RH (%) 3200 50.7 1.8 46.5 61.1

The data show that the weather match in the two periods is quite good. The average outdoor dry-
bulb temperature is within 0.3°F for the two aggregate periods. Solar irradiance was similar with
a variation of 10 W/m? on average (+5%). The ambient dewpoint temperatures were somewhat
lower in the post periods, indicating less outdoor moisture — not surprising given the hurricanes
which saturated Central Florida in the summer of 2004. Note that the post AC power peaked
later in the day than the pre AC power. This difference is due to the homeowner using a daytime
thermostat setup strategy during the 2005 portion of post-retrofit period, with the thermostat
setpoint being increased in the morning and lowered in the evening (approximately 6 PM eastern
standard time). However, also note that average pre/post interior temperatures for the comparison
were still similar as shown in Tables 5 and 6.

Merritt Island Energy Savings

Energy savings were negative in this air conditioning change out. The data summarized in Tables
5 and 6 and Figure 18 reveal that the average air conditioning power (air handler, compressor
and condenser fan) was 21.4 kWh/day in the pre period and 23.1 kWh/day in the post — a
negative energy savings of about 8%, which is greater than the 2% decrease in performance that
would be suggested by the difference in SEER. The aggregate plot (Figure 18) includes the full
data set pre and post, less the removed data compromised by the hurricanes during summer. Note
that the new downsized AC system shows increased energy use during the late afternoon and
early evening hours, but very similar interior humidity levels pre and post. Energy use was
generally the same or lower for the new system between midnight and 7 AM indicating that duct
gains were likely responsible for the poorer afternoon performance.

Figure 19 shows an analysis of all days pre and post retrofit with the daily measured air
conditioning electric consumption regressed against the recorded interior to exterior temperature
difference. Although scatter is apparent -- and pre-retrofit data is limited -- both the slope and
intercept term of the regression suggest worse performance for the new AC system. When
evaluated at a 3°F temperature difference (to approximate a typical summer day where the
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average outdoor temperature is 80°F and the interior is maintained at an average of 77°F), the
regression estimates that space cooling electric consumption is higher with the new AC system
by about 15%.
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Figure 19. Impact of AC right-sizing on daily AC consumption.
Merritt Island, FL: 2004 & 2005

Figure 20 shows an evaluation of two days selected to yield close weather in the pre and post
periods. Here we selected data from July 28, 2004 — a typical summer day, and compared that
against data for October 3rd of the same year. Note that the maximum temperatures for the two
days are 87.3°F and 89.4°F, respectively as compared with the Manual J 8" Edition design day
of 90°F for Cape Kennedy. Interior temperatures on the two days were quite comparable. The
relative match of selected weather parameters is shown below in Table 7.
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Figure 20. Weather on matched days pre and post for the Merritt Island site

Table 7. Comparative Weather Conditions on Pre and Post Day for Matched Day Analysis

Pre, July 28, 2004

Variable Obs Mean Std. Dev. Min. Max.
Ambient Dry-bulb Temp. (F) 96 80.1 4.6 72.8 87.3
Ambient Dewpoint Temp. (F) 96 75.7 1.7 72.8 79.0
Insolation (W/m=2) 96 213.7 286.7 0.6 101.9
Interior Temp. (F) 96 78.5 0.5 77.7 79.4
Interior RH (%) 96 49.1 0.7 47.8 50.9
AC Power (Watts) 96 875.5 1078.7 0 3700
Post, October 3, 2004

Variable Obs Mean Std. Dev. Min. Max.
Ambient Dry-bulb Temp. (F) 96 80.00 6.0 71.2 89.1
Ambient Dewpoint Temp. (F) 96 73.64 1.3 69.0 76.1
Insolation (W/m=2) 96 239.7 312.3 0.6 838.1
Interior Temp. (F) 96 78.3 0.2 77.8 78.8
Interior RH (%) 96 49.6 0.5 48.6 51.1
AC Power (Watts) 96 1027.5 942.5 0 2964

Three plots (Figure 21a, b, and ¢) show how the temperature, relative humidity, AC power and
supply air temperature varied during the comparative days. Note that similar to the other
analytical methods, the data shows an increase in AC electric consumption of about 17.6% (21.0
kWh/day vs. 24.7 kWh/day), and similar relative humidity control (49.1% vs. 49.6%). From a
statistical standpoint, there was no difference in the interior humidity levels. Note, however, that
the supply air temperatures for the new system with the higher coil air flow per unit capacity was
greater by about 1.3°F -- indicative of somewhat warmer evaporator coil temperatures. The
runtime of the AC system was about 6.8 hours per day for the new system versus 5.0 hour per
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day for the original — an increase in runtime of 36% — somewhat less than the ratio of the
nominal capacity of the original and new equipment (44,500 Btu/hr vs. 29,400 Btu/hr or 51%).

7/28/04 (Original) vs. 10/3/04 (New)
4000
—— Original AC
= (Avg. per
£ 3000 1 day = 21.0
% KWh)
2000 -
o — New AC
= (Avg. per
2 1000 day = 24.7
kWh)
0
YU B0 0N B OO IPOMDI o
Hour

Figure 21a. Indoor air conditions comparison for the Merritt Island site
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Figure 21b. AC power use comparison for the Merritt Island site
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Figure 21c. AC supply air temperature comparison for the Merritt Island site

* All supply temperatures below 63°F assumed as system on and used in averages and "on time" estimates.

We conclude from the three analysis methods that the new downsized system increased daily
space cooling energy use by 8 to 18%. The most likely explanation for the poorer performance of
the new air conditioner system is that with the greater runtime of the new air-conditioning
system, that duct leakage and conduction to the attic duct system is placing a considerable
additional load on the AC system and, in the case of any supply leaks, loss of conditioned air.
The home has a light gray shingle roof, which FSEC research shows can have mid attic air
temperatures often reaching 120°F or more on hot summer days (Parker et al. 2000). It is perhaps
significant that the period with the greatest increase in energy use with the new system is in the
early evening hours when the attic space remains hot and increased runtime can be expected to
increase duct conduction losses during this period.
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Jacksonville

For the Jacksonville Florida house, the original air
conditioner was changed out on September 17,
2004. The original unit was a heat pump with a
nominal ARI 95°F outdoor/80°F indoor/ 67°F wet
bulb condition cooling capacity of 47,000 Btu/hr.
The Manual J 8" Edition estimated size for the
system for this 2,255 square foot house was 28,420
Btu/hr and thus a system with a nominal capacity of
33,000 Btu/hr was installed. Both the air handler
and outdoor unit were changed out. The original
system had a nameplate SEER of 12.05 Btu/W; the
new downsized system had an identical nameplate
performance. Tested total duct leakage (at 25 pascals, pre-retrofit) at this house was 153 cubic
feet per minute (Qny: = 0.07) and leakage to outside was 55 cubic feet per minute (Qnoy: = 0.02).

Figure 22. Project house in Jacksonville,

The original unit was oversized by approximately 65%. As in the
other retrofits, a single speed air handler was used. This air handler
had multiple speed taps for the permanent split capacitor (PSC)
motor (Figure 23). As with the other project homes, we found it EEEEN
impossible to match the nominal CFM/ton of cooling capacity in the E
pre-retrofit system to that in the post system. The original oversized
system had an evaporator air flow of 1,710 cfm or 436 cfm/ton. With
the post retrofit system, even choosing the lowest speed tap, the flow
was 1,273 cfm or 463 cfm/ton. Thus, the relative coil air flow was
about 6% higher post retrofit, and somewhat higher in both cases
than the typical recommendation for air flow for single speed systems
(400 cfm/ton).

Figure 23. New air handler

Detailed data were taken on the systems pre and post. Critical to the at Jacksonville site

system evaluation, this included outdoor conditions (temperature, relative humidity and solar
radiation) and air conditioner electric power. Comfort conditions included indoor temperatures
and relative humidity. Cooling system supply temperatures
2 were also taken, but hardware problems resulted in the post
retrofit condensate data being lost (Figure 24). Data were

taken every fifteen minutes, although some data were
collected at 2-minute intervals.

As at the other project sites, the hurricanes of 2004 reduced
the available data before and after the AC change outs and
made it difficult to obtain good exterior dew point matches
as well as interior relative humidity conditions. These
weather events included Hurricanes Charley and Frances
which affected the data prior to change out on August 13™-
18th inclusive and September 1-15". Thus, these data were lost for the pre-change out period
and were removed from the available data stream. Similarly, just days after the installation of the
new system, Hurricane Jeanne struck leading to loss of data for the dates from 24 - 28
September. These data were removed prior to the analysis, but the piecemeal nature of the data
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stream made it necessary to carefully match up weather data in the pre and post periods so that
reasonable conclusions could be reached relative to performance.

To estimate the impact of the new AC system, we used the same three previously-utilized
techniques:

1. Comparison of long term pre and post periods with similar weather match.

2. Comparison of selected pre and post days with a close statistical match of weather
conditions.

3. Linear regression of daily energy use against daily inside to outside temperature
difference.

Analysis of Matched Long Term Periods
Figure 25 shows the average AC power and interior relative humidity over the summer of 2004

when the AC was changed out. Note that maximum AC power drops after the retrofit, but
interior relative humidity does not appear substantially changed.
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Figure 25. Time series data for AC power and interior relative humidity at the Jacksonville site

Figure 26 shows a summary of the fundamental data from the project when evaluated over the
longest periods of time with good weather match. Unfortunately, due to the late date which the
new system went in (September 17, 2004) the weather was much cooler post retrofit, requiring
that the data be segmented in both the pre and post periods to obtain reasonable match to outdoor
temperature conditions. Another problem was that the new air conditioner generally maintained a
cooler indoor temperature in the post period — averaging about 1°F lower. A final problem was
that Hurricane Jeanne struck the week after the system was changed out. This resulted in one day
without power at the site and increases in interior moisture that were not removed for days after
the hurricane. This problem is graphically illustrated in Figure 27 which shows air conditioner
power and interior air conditions superimposed over the period. This week-long period after the
storm with the new air conditioner had to be removed from the data set to prevent bias in the
loads and interior relative humidity with the new machine.
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Figure 27. Impact of hurricane-related moisture on long-term interior humidity control

The pre data includes the entire data cleaned data set with all 15-minute data from August 4-
September 16, 2004 and comprises 3,840 fifteen-minute observations — 40 days of data. The post
data consists of only the cleaned data in the post period from September 18, 2004 through
October 3, 2004 with 768 observations — 8 days of data. The averages in the two periods are

summarized below in Tables 8 and 9.
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Table 8. Summary of Jacksonville Data Prior to Retrofit

Variable Obs Mean Std. Dev. Min. Max.
AC (kWh/day) 3833 26.6 22.4 0 107.0
Ambient Dry-bulb Temp. (F) 3840 79.2 6.5 67.0 99.4
Ambient Dewpoint Temp. (F) 3840 74.1 2.9 63.1 81.5
Insolation (W/m=2) 3840 141.3 236.4 0.6 1079.4
Interior Temp. (F) 3840 74.8 1.3 69.9 78.6
Interior RH (%) 3840 52.0 2.8 45.5 64.6
Table 9. Summary of Jacksonville Post-Retrofit Data
Variable Obs Mean Std. Dev. Min. Max.
AC (kWh/day) 768 30.9 22.11 0 102.3
Ambient Dry-bulb Temp. (F) 768 79.1 7.3 67.0 94.0
Ambient Dewpoint Temp. (F) 768 72.7 3.3 57.0 79.3
Insolation (W/m=2) 768 188.3 270.1 0.6 909.4
Interior Temp. (F) 768 74.0 1.4 71.4 80.1
Interior RH (%) 768 535 3.0 47.8 64.3

The data show that the weather match in the two periods is fair. The average outdoor temperature
was quite good — within 0.1°F of the two aggregate periods. However solar irradiance differed
being within 40 W/m? on average (+33%). Unfortunately, this could not be remedied without
poor matches on temperature which was considered the more important weather parameter. The
dewpoints were somewhat lower in the post periods, indicating less outdoor moisture — not
surprising given the hurricanes which saturated Central Florida in the earlier summer of 2004.

Jacksonville Energy Savings

Data analysis revealed no energy savings in this air conditioning change out. The data
summarized in Tables 8 and 9 and Figure 26 reveal that the average air conditioning power (air
handler, compressor and condenser fan) was 26.6 kWh/day in the pre period and 30.9 kWh/day
in the post — a negative energy savings of about 16% greater energy use in the post period.
However, note that the post data had a lower interior temperature of about 0.8°F which could not
be adjusted. The aggregate plot (Figure 26) includes the full data set pre and post, less the
removed data compromised by the hurricanes during summer. Note that the downsized system
shows increased energy use during daytime hours between noon and 8 PM, but similar energy
use in other hours. The observation fits the hypothesis that duct conductive heat gains and duct
leakage from extended runtimes were impacting energy use during daytime hours when attic
temperatures are high. Interior humidity levels were slightly higher in the post period. This fits
the supply air temperature data which showed slightly higher coil air temperatures post retrofit.

Jacksonville Regression Analysis

Figure 28 shows an analysis of all the days pre and post retrofit with the daily measured air
conditioning electric consumption regressed against the recorded interior to exterior temperature
difference. Although scatter is apparent, both the slope and intercept term of the regression
suggests similar performance for the new system. When evaluated at a 3°F temperature
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difference (to approximate a typical summer day where the average outdoor temperature is 80°F
and the interior is maintained at an average of 77°F), the regression estimates that space cooling
electric power is virtually identical for the system pre and post. Thus, this method alone corrects
for the lower thermostat temperature with the new system and predicts similar performance
between the original and new AC systems.
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Figure 28. Impact of AC right-sizing on daily AC consumption.
Jacksonville, FL: 2004

Figure 29 shows an evaluation of two days selected to yield close weather in the pre and post
periods. Here we selected data from August 30, 2004 — a typical summer day, and compared that
against data for October 2™ of the same year. Note that the maximum temperatures for the two
days are 93°F and 94°F, respectively as compared with the Manual J 8" Edition design day of
93°F for Jacksonville. Interior temperatures on the two days were quite comparable. The relative
match of selected weather parameters is shown below in Table 10.
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Figure 29. Weather on matched days pre and post for the Jacksonville site

Table 10. Comparative Weather Conditions on Pre and Post Day for Matched Day Analysis

Pre, August 30, 2004

Variable Obs Mean Std. Dev. Min. Max.
Ambient Dry-bulb Temp. (F) 96 80.1 7.3 71.1 93.2

Ambient Dewpoint Temp. (F) 96 75.4 2.6 71.2 80.4

Insolation (W/m=2) 96 196.9 292.3 0.6 1001.9
Interior Temp. (F) 96 74.8 1.6 73.0 77.4

Interior RH (%) 96 50.0 1.5 47.1 54.2

AC Power (Watts) 96 1320.1 1064.9 0 3924

Post, October 2, 2004

Variable Obs Mean Std. Dev. Min. Max.
Ambient Dry-bulb Temp. (F) 96 79.9 7.4 70.4 94.0

Ambient Dewpoint Temp. (F) 96 73.4 1.1 71.5 75.4

Insolation (W/m=2) 96 168.8 250.8 0.6 839.4
Interior Temp. (F) 96 74.6 1.7 70.8 77.3

Interior RH (%) 96 50.2 0.7 48.3 52.1

AC Power (Watts) 96 1383.4 674.5 28 3088

Three plots (Figure 30a, b, and ¢) show how the temperature, relative humidity, AC power and
supply air temperature varied during the comparative days. Note that consistent with the other
analytical methods, the data shows a slight increase in AC electric consumption of about 5%
(31.7 kWh/day vs. 33.2 kWh/day), with very similar relative humidity control. Note, however,
that the supply air temperature for the new system with the higher coil air flow per unit capacity
was very similar. The runtime of the air-conditioning system was about 12.8 hours per day for
the new system versus 8.5 hours per day for the original — an increase in runtime of 51% - longer
than the ratio in the nominal capacity of the original and new equipment (47,000 Btu/hr vs.
33,000 Btu/hr = +42%). This may indicate that the runtime itself was adding load to the
operation of the machine during daytime hours when the attic is hot.
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Figure 30a. Indoor air conditions comparison for the Jacksonville site
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Figure 30b. AC power use comparison for the Jacksonville site
8/30/04 (Original) vs. 10/2/04 (New)

90
@ —— Original AC
o 80 (Avg. = 56.3F,
g [ on8s5s
— hrs/day)*
= 70 il } “ r
< \ — New AC (Avg.
> ' \ 'l \’lm | ‘ = 56.5F, On
A i ==
S ‘
® |

N
50
YYD N 00N D 00NN D DD Y Y
Hour

Figure 30c. AC supply air temperature comparison for the Jacksonville site
* All supply temperatures below 63°F assumed as system on and used in averages and "on time" estimates.
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Jacksonville Summary and Discussion

We conclude from the three analysis methods that the new system increased daily space cooling
energy use by 0 to 16%. The most likely numbers are those emerging from the regression which
controls for the lower indoor temperature post AC change out. Thus, from a statistical
standpoint, energy use was unchanged with the new machine.

The most likely explanation for the lack of savings for the new air conditioner system is that with
the greater runtime of the new air conditioning system, that duct leakage and conduction to the
duct system is placing additional load on the AC system and, in the case of any supply leaks,
losses of conditioned air. It is perhaps significant that the period with the greatest increase in
energy use with the new system is during the daytime hours between noon and 8 PM when the
attic space remains hot and increased runtime can be expected to increase duct conduction losses
during this period. Indeed, a simulation study of the impact of reducing AC oversizing with the
EnergyGauge USA simulation software had already suggested that most — if not all — of the
benefit of right-sizing would be lost due to duct losses from conduction and induced air
infiltration due to duct leakage.

North Port

For the North Port Florida house (Figure 31),
mainly due to the 2004 hurricanes, the original air
conditioner was changed out very late, on [
October 7, 2004. The original unit was a heat K8
pump with a nominal ARI 95°F outdoor/80°F
indoor/ 67°F wet bulb condition coolin% capacity
of 41,000 Btu/hr. The Manual J 8" Edition
estimated size for the system for this 2,012 square
foot house was 23,150 Btu/hr and thus a system
with a nominal capacity of 27,800 Btu/hr was
installed. Both the air handler and outdoor unit
were changed out. The original system had a
nameplate SEER of 13.15 Btu/W; the new
downsized system had a nameplate SEER of
13.75. Tested total duct leakage (at 25 pascals, pre-retrofit) at this house was 178 cubic feet per
minute (Qn = 0.09) and leakage to outside was 34 cubic feet per minute (Qnoyt = 0.02).

Figure 31. Project house in North Port, Florida

There is no 2004 post-change out North Port monitored data
that can be directly compared with the pre-change out data
(the two highest maximum daily temperatures during the
post-change out period were only 86°F and 88°F).
However, a comparison using just this data from two post
period days indicates that both power use and RH levels are
higher with the smaller post-change out AC. Indoor
conditions data from the North Port home over the summer
: of 2005 indicate that relative humidities for the new smaller
Figure 3. echnician verifie system averaged around 3% higher than those seen with the

performance of new AC system original larger system (Figure 32).
at North Port site 26




All Sites
Homeowner Satisfaction

Initial feedback from two of the homeowners indicated overall satisfaction with the new, smaller
AC systems. One homeowner noted that the relative humidity seemed to be higher in his house
after the change out. Another homeowner indicated that they preferred the higher airflow rates of
the original system although they were otherwise satisfied with the new unit (note that the supply
air diffusers were sized for the original system so reduced flow with the new, downsized system
reduced air velocities at the supply diffusers which impacted air circulation in the conditioned
spaces). The Jacksonville homeowner was satisfied with the new system and the house was sold
with this system. The other three homeowners were asked to make a final decision on if they
would be keeping the new systems after the 2005 summer season. The Merritt Island and North
Port homeowners decided to keep their new properly-sized AC systems. Mainly due to the
higher RH levels experienced with the smaller system, the Lakeland homeowner had the original
AC system re-installed.

System Airflows

Table 11 shows the measured air flows for each of the original and new AC systems in each
project house. In each house, the original AC system’s airflow per ton was lower than the new
system’s airflow per ton, with the properly-sized systems running from 13 to 85 cfm/ton higher
than original systems’ airflows. This difference is due to the fact that the duct work in these
homes were sized for the larger systems and now the smaller systems are operating at lower
pressures, allowing more airflow.

Table 11. Summary of Original and New (Downsized) AC System Capacities and Air Flow Rates

Original AC System New AC System
Site Size Air Flow Size Air Flow
(Btu/hr) (cfm/ton) (Btu/hr) (cfm/ton)
Jacksonville 47,000 436 33,000 463
Merritt Isl. 44,500 359 29,400 372
Lakeland 58,500 341 42,000 426
Northport 41,000 372 27,800 424

Figure 33 shows the relationship between the differences in airflow per ton rates and differences
in RH levels between the original and properly-sized systems. It shows that all new system
average RH levels are higher than those of the original systems, and that as the airflow per ton
differences increased, the RH levels in the houses also increased.
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Airflow Rate vs. Change in RH
for Original vs. Properly Sized AC units
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Figure 33. Air handler air flow rate and RH differences pre and post-change out
in the four project houses (North Port is an estimate)

Impacts of Machine Sizing on Utility Coincident Peak Demand

While utility coincident summer peak demand (kW) savings due to machine downsizing was
found to be an important impact, reporting these values is not uniformly possible. The reason is
that the "matched days" chosen for the matched-days analysis were not necessarily peak weather
days, but rather the warmest days for which we could find a good weather match (without
changes to the interior thermostat). One could argue that the Lakeland matched days can be
characterized as “peak days” as they were both quite hot (94°F and 96°F, respectively) and the
same is true for Jacksonville where the peak outdoor temperatures were fairly similar (93.2°F
and 94°F). This was not true, however, for the Merritt Island matched days where the maximum
outdoor temperatures were 87-89°F. There was no analysis possible with Northport; the data
were taken at the end of the season and cannot be considered to characterize peak under any
circumstances.

Also, one must be very careful with the definition of the peak kW savings. The relevant peak kW
savings are those that occur during the utility coincident system peak. Nor is this the
instantaneous peak. Certainly, one cannot just examine the peak demand of the relative AC
systems and conclude these differences are the peak savings-- unless comparing two systems
which are activated right at the beginning of the utility peak window and spend the entire time
"pulling down™ the interior conditions to the set point.

In Florida, the electric utility summer peak period extends from 4 - 7 PM EDT (our data is
reported in standard time in the graphs). Over this long of a period, diversity of AC operation in
a large group of air conditioners becomes important -- with longer runtimes of smaller machines,
some amount of what is gained from a lower short-term kW demand will be lost with a longer
period of AC demand within the cycle. Thus, smaller sizes will increase the number of AC
systems in a large statistical group which are operating at any given time.
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Since the monitoring was compromised by the weather in the summer of 2004 and the matched
days coming from different times of year with differing solar conditions, any analysis of peak
reductions must necessarily be crude. With those cautions, estimates of peak electric demand
reduction for the Lakeland and Jacksonville homes are given below:

Table 12. Estimated Coincident Peak Demand Reduction from Downsized AC Systems

Site Pre-Retrofit Post Retrofit Savings

Lakeland | 1288 W (Aug. 22, 2004) | 911 W (Oct. 3,2004) | 377 W (29%)

Jacksonville | 3124 W (Aug. 30, 2004) | 1574 W (Oct. 2, 2004) | 1550 W (50%)

Note: Average peak demand from 4-7 PM (EDT)

These impacts are potentially important. The ratios of the changed nominal system size (Btu/hr)
were roughly 30% for either of the above cases (see Table 11). In Table 12, we see that the
change in peak demand were fully as large (or larger) than the change to nominal capacity.
While the AC sizing issue does not look to have large ramifications on energy consumption
(kWh) for consumers with ducts in attics, it does appear to have potentially larger impacts for
utilities during their peak generation periods.

In another study done for Progress Energy Florida with a very large statistical sample of 171
sub-metered homes with air conditioners, the AC size had a statistically-significant impact on
peak electric demand (Parker 2002). The present study tends to reinforce that previous finding.

DISCUSSION
Cycling Losses in Modern Air Conditioners under Part-Load Conditions

Several factors conspire to make modern vintage air-conditioning systems less susceptible to
impacts by cycling losses. Manufacturers make significant efforts to reduce the cooling
coefficient of degradation (Cp) which enters into the calculation of seasonal energy efficiency
ratio (SEER). Given the mathematical formulation of Cp, the energy losses associated with a Cp
value are approximately one half the fractional value. This is possibly a major factor in why this
study’s results differ from earlier studies that indicate energy savings from smaller systems (e.g.
James et al. 1997).

Larger unitary air conditioners (>65,000Btu/hr) are rated using EER, a rating standardized by
ARI, which reports steady-state efficiency at 95°F outdoor and 80°F indoor temperature.
However, smaller air conditioners (<65,000 Btu/hr) are rated using SEER, a rating developed by
the U.S. DOE and based on EER measurements, intended to better indicate average seasonal
performance, i.e., a season average EER. Government programs, many utility programs and
consumers have relied on seasonal energy efficiency ratio (SEER) as the indicator of central
system cooling equipment performance. As implemented, SEER is estimated to incorporate both
weather related influence to the compressor coefficient of performance as well as cycling losses
due to equipment operation under part-load conditions. However, for single-speed equipment,
SEER is simply estimated as the EER at test condition “B” which consists of an 82°F outdoor
and 80°F indoor temperature condition.
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SEER = EERD (1- 0.5Cp)

To obtain SEER, the “B” test condition result is then lowered by a cooling degradation
coefficient (Cp) to account for cycling losses, which varies depending on a host of factors: coil
thermal capacitance and configuration, refrigerant expansion device, fan time delay and
refrigerant control strategies. Air conditioning equipment is usually tested for Cp, with a median
cooling value of about 0.09 for typical units. A default value for Cp of 0.25 may be used by
manufacturers in lieu of testing, but that option is rarely exercised because of the high default
value and the resulting deleterious impact on estimated nameplate SEER (Dougherty 2003).

Although there is considerable scatter in Dougherty’s data from 2003 on 322 air-conditioning
systems (see Figure 34), the general consensus was the key hardware features influencing Cp are
indoor fan (off) delay and whether the high and low sides of the refrigerant circuit equalize
quickly during the off cycle. For analysis of the data, the AC industry favored 3 levels (do
neither, do one or the other, do both). Dougherty found that breaking the middle section into its
two natural parts was marginally justified: fan delay gains you a little more than hardware that
delays equalization (e.g., non-bleed TXV, liquid line solenoid, electronic expansion device). The
median values for Cp were 0.09 for do neither, 0.07 for do refrigerant control or fan delay and
0.04 for both. Interestingly, the data did not show Cp, values to be low only for variable speed or
two-stage equipment. Single stage equipment also had low Cp, values.

More recently, CDH Energy has analyzed a very large data set of over 5,100 residential split
system air conditioners in the online 2006 California Energy Commission (CEC) database
(http://www.energy.ca.gov/appliances/appliance/excel_based_files/). The EXCEL file includes
manufacturer model information as well as the steady-state capacity and power data at 82°F (Qs2
and Wg, at Test B conditions) and at 95°F (Qgs and Woys at Test A conditions). In addition, the
file includes the rated EER (defined as Qos/Woes), the degradation coefficient (Cp), and the rated
or listed SEER. As with Dougherty's work, this database shows that Cp in modern equipment is
0.1 with no intervention and less with fan delay and prevention of refrigerant migration.
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Figure 34. Measured cyclic degradation coefficient for 322 air conditioners by type
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Thus, to obtain higher SEER and HSPF ratings, manufacturers have frequently instituted a timed
indoor unit fan off delay and control of post-cycle refrigerant migration to achieve Cp values of
0.05 or less. Standard systems have Cp levels of approximately 0.09 even without utilization of
these strategies. In general, this means that potential cycling losses on a theoretic basis will be
between 2 and 5% under typical conditions (Cp/2).

Given the particulars of ARI test condition “B”, SEER is also tied to an assumed 80°F indoor
condition — at least two degrees higher than the cooling set point commonly observed in air
conditioned residences (Parker et al. 2000). The current standards mandate air conditioner
efficiency levels using EER and SEER and consumers are typically guided to make energy-wise
purchases based on these ratings — the higher the SEER, the more efficient the system.
Understandably, manufacturers work to improve the SEER ratings of equipment given the
current guidelines. Given the current test procedure, there is strong incentive to produce air
conditioning equipment that does best under moderate load conditions (Kavanaugh 2002).

There is also a very large incentive to reduce cycling losses associated with AC performance.
This has resulted in manufacturing processes in recent years that have tended to reduce cycling
losses through the use of timed indoor unit fan off delay and control of post-cycle refrigerant
migration. Thus, modern units may have lower losses in energy efficiency due to system
oversizing than seen historically.

Discussion of Interactions

Traditionally, proper sizing of heating and cooling equipment in residences has been viewed as
being important to providing residential interior comfort conditions in terms of temperature,
humidity and ventilation. Similarly, proper sizing for residential cooling systems has been
viewed as particularly vital in order to provide optimal system energy efficiency while
maintaining comfort. The conventional view has been that when equipment is oversized, system
efficiency is reduced, energy costs increase and interior comfort may be compromised.

Indeed, as noted in the introduction, an earlier study involving early 1990°s equipment of over
368 single-system sub-metered homes in Florida found that air conditioners oversized by 120%
Manual J incurred a 3.7% increase in annual energy use. There has also been the expectation of
poorer humidity control in humid climates where equipment short-cycling can lead to less
effective humidity control during the first minutes of cycles where the evaporator is cooling
down. However, because of the importance of Cp to SEER, manufacturers have made strenuous
efforts to reduce Cp in modern central air conditioners. Older equipment often had a Cp value of
around 0.2, implying that cycling losses made efficiency 10% worse due to performance under
part-load conditions. Since right-sized equipment can be expected to recoup about half of this
impact, the expectation was that better sized equipment would be 5% more efficient than
oversized systems.

Because of the emphasis on SEER, data shown in this report as collected by NIST (Dougherty
2003) shows that for a large sample of 2002 vintage air conditioners that Cp, is typically 0.09 for
standard equipment, 0.07 for standard equipment with a post run fan delay and typically 0.04 for
that with a fan delay and solenoid control of refrigerant to prevent post cycle refrigerant
migration. Since almost all modern equipment is now shipped with a post run fan delay (an
unfortunate fact in hot-humid climates due to the impact on humidity control), this means that
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cycling losses of modern equipment are typically less than a third of what they were previously —
about 3.5% on average. Since only about half of this impact can be recouped through better
sizing, the expected theoretical impact is only about 2% on average.

Another previously unaccounted for fact is that whereas machine operational efficiencies are
slightly negatively impacted by cycling losses, the greater run-time associated with downsized
equipment will mean that duct losses are substantially increased. For instance, a machine
downsized by 50% will have approximately 50% greater run-time to serve the same load. These
losses include both duct leakage and duct heat gains if the ducts are located in unconditioned
zones. For instance, duct leakage and house infiltration rates will be impacted by air handler
operation (Cummings et al. 1991). Similarly, duct conduction and heat gains will be highest
during periods when the ducts are operating with air flow through the ducts and maximum delta-
T across the poorly insulated duct walls. These problems are particularly acute if the duct system
is located in attics which can become very hot. Unfortunately, for slab on grade homes, as
predominate in the hot climates, ducts are located in the attic space in more than 90% of
installations.

Simulation analysis for ASHRAE Standard 152 (ASHRAE 2001, Gu et al.1998; 2003), and other
work shows that losses due to duct air leakage are often about 5-10% of overall cooling load
(depending on leakage area and location) and duct heat transfer for conduction gains to ducts in
attics is often a similar amount depending on insulation level with typical duct configurations.
Although Manual J, 8" edition accounts explicitly for duct losses, it does not consider how duct
losses dynamically interact with system sizing to impact the losses themselves (e.g., duct losses
are not static with system sizing and vary proportionately). These losses are largely proportional
to machine runtime; air leakage only occurs when the machine is running. Although duct
systems can be re-sized with smaller ducts, the reduction of duct area does not scale linearly with
duct air flow. Also as ducts are made smaller, pressures on duct leaks will be increased and fan
power will go up.

Impacts of Duct Resizing with Air Conditioner Resizing

To understand the theoretical issue of duct resizing impacts on duct losses, we performed a short
theoretical exercise to evaluate the interaction. For instance if a 48,000 Btu/hr air conditioner
was oversized by 50%, the right-sized equivalent unit would be a 32,000 Btu/hr unit. Assuming
equivalent air flow per unit cooling (400 cfm/ton), the four ton unit would have an air flow of
1,600 cfm while the 2.67-ton unit would have coil air flow of 1,067 cfm. The ratio of these flows
is 0.667.

Assuming that the average duct for the original 4-ton unit was properly sized and that the
average duct diameter was 10.0 in. for the overall system, the cross-sectional area of the duct
would be 78.5 square inches carrying a flow of 1,600 cfm (see Rudd 2003). The circumference
of the duct is 34.16 inches so that 200 lineal feet of the duct would amount to a total duct surface
area of 569 square feet for the original system.

Assuming that the re-designed system operates at the same air flow velocities and duct pressures
(so that leakage is under the same pressure as well), the cross-sectional area of the new system
would be 78.5 * 0.667 or 52.4 square inches. This is most closely approximated by an 8 in. duct
which has a cross-sectional area of 50.3 square inches. As the lineal distance for the trunk lines
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and run-outs must be the same (assuming we have the same house), the resulting surface area for
the re-designed duct system would be 419 square feet. Thus the duct area for heat transfer would
be 74% of the original. Since duct conductance losses are proportional to duct area, the duct
conductance losses would be reduced by about 26%. Although perhaps logical, it may be
presumptuous to assume that duct air leakage scales linearly with duct area. However, for resized
AC systems without resized duct systems (e.g., the four test homes included in this field study),
the ducts will operate under lower pressure leading to a lower air leakage rate, but for a greater
runtime period.>

Under the typical assumption that total duct losses are about 20% of air conditioner peak load
during runtime with half of this from conduction, this means that resized ducts would reduce the
duct losses associated with re-sized equipment from 20% to 17%. Assuming that leakage was
proportional to duct area, the impact would change to 15%. In either case, this exercise shows
that although duct re-sizing would help reduce the fact that duct losses increase in proportion to
runtime, it would not compensate for the fact that duct losses during runtime are typically much
greater (2-3 times larger) than those from machine cycling losses.

Thus, under most circumstances, the losses due to increased runtime from ducts in non-
conditioned spaces will be greater than the gains in efficiency from reduced cycling with modern
vintage equipment. Of course, these same impacts were present in older equipment, but there the
cycling losses were about three times greater than they are with modern equipment. Thus, one
fundamental conclusion is that with modern equipment, better cooling performance with
properly-sized equipment is likely only to be realized with ducts inside the conditioned space or
with well sealed ducts in non-hostile environments (crawlspaces, basements or in attics with cool
roof construction).

CONCLUSIONS

Four case studies were performed where over-sized, new air conditioners were replaced with
properly-sized systems. These systems were all located in Florida — two in Central Florida
(Lakeland and Merritt Island), one in North Florida (Jacksonville) and one in Southwest Florida
(North Port*). The systems were oversized in each case by 47-65% according to Manual J 8"
Edition. Each of the systems was installed and then commissioned to make certain they were
operating properly. All of the systems had the duct systems located in the attic. Each house had a
shingle roof. The Lakeland system had the air handler in the attic; two others had the air handler
located in the garage, and one system had the air handler located in an interior utility closet.

Fifteen minute data on air conditioner power, outdoor weather conditions and interior humidity
levels were evaluated with each of the AC systems before and after change out. The houses were

® In systems without re-sized ducts, airflow rates might average about 25% lower for the smaller systems. For the
same ductwork, this translates into static pressures that would be about 45% lower, assuming that pressure drops are
proportional to airflow squared in the ductwork. Lower duct static pressure should result in a lower duct leakage
rate. However, the aggregate impact depends on the duct operating pressure (at air leakage sites) but also the extent
of the increased supply fan run time due to the lower cooling capacity of the smaller systems.

* Due to the hurricanes of 2004, late installation of this system made it difficult to extract useful data for use in this
report.
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occupied, but the homeowners generally did well at maintaining a constant interior thermostat
setting.

Outdoor condenser units and indoor air handlers were changed to new smaller systems, although
ductwork remained the same. All of the original and replaced systems had single-speed air
handlers. These air handlers had multiple speed taps for the permanent split capacitor (PSC)
motors. Generally, we found it impossible to match the nominal CFM/ton of cooling capacity in
the pre-retrofit system to that in the post system.

For the Lakeland house, the measured indoor humidity averaged 3.6% higher post retrofit. One
key factor in the system change out, however, was the fact that single speed air handlers were
used. The change out did show energy savings of 8 - 13% — greater than the 3% expected in the
difference from SEER between the pre and post retrofit machines. Taken at face value, the
change in machine size was associated with an energy savings of 5-10%.

The disparity of the air handler flow was greatest in the Lakeland AC system. Here, the pre-
retrofit oversized system had an evaporator air flow of 1,660 cfm or 341 cfm/ton. With the post
retrofit system, even choosing the lowest speed tap, the flow was 1,490 cfm or 426 cfm/ton. As
shown in other evaluations (Palani et al. 1992; Parker et al. 1997), such a disparity in evaporator
coil flow rate can be expected to adversely impact coil temperatures and humidity removal —
particularly at the higher flow rate.

Based on earlier work, it appears that most of the lower energy use in the Lakeland system was
achieve by trading off the sensible heat ratio (SHR) of the old equipment (lower) against the new
equipment (higher). While it would be convenient to attribute this poor interior moisture control
to the higher coil air flow, the higher measured condensate in the post period and lower post
period outdoor dew points suggest that somehow the moisture load was much greater with the
new machine.

If a higher evaporator temperature and lower outdoor dewpoints were reducing the moisture
being removed by the air conditioner, then we would expect to see that the moisture removal
rates were lower. In fact, we found just the opposite; the new air conditioner actually removed an
average of 1.4 additional gallons of water each day from the house after the unit was changed
out. Given the lower outdoor dew point in the post period, this means that somehow an increased
moisture load was being placed on the air conditioner. We hypothesize that the greater runtime
of the new unit (11% increase) resulted in more moisture from the attic being drawn into the air
handler located there. This observation also fits the general theory that duct losses and leakage
are proportional to machine run time.

The new air-conditioning system in Merritt Island (44.5 kBtu/hr to 29.4 kBtu/hr against a
Manual J estimate of 30.2 kBtu/hr) showed increased energy use in all three methods of
evaluation (long term matched weather periods, matched individual days, and regression). The
estimates indicate increases in energy use of 8-18%. The nameplate SEER of the new unit was
2% worse for the new system. Although the condensate measurement was not available to look
for evidence of increased duct leakage as seen at the Lakeland site, the long-term profile data
clearly showed an increase in late afternoon and early evening AC power use in the post change-
out data that would fit the hypothesis of increased attic duct loads being the culprit in the
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increased energy use with the downsized air-conditioning system. Relative humidity was very
similar in the pre and post periods (no statistical difference).

The downsized air-conditioning system in Jacksonville, Florida (47 kBtu/hr to 33 kBtu/hr against
a Manual J estimate of 28.4 kBtu/hr) also showed slightly elevated energy use in the post period.
The three methods showed impacts of 0% saving to a 16% increased energy use. Because the
new AC system seemed to maintain an interior temperature about 1°F lower in the post period,
the regression analysis method seemed to show the most reliable estimates of the impact which
was 0% — no impact. Again, however, the profile plot of the pre and post period showed strongly
elevated consumption of the new air-conditioning system between noon and 8 PM as would be
expected if increased duct conduction and duct leakage from hot attic conditions were the driving
force for impacts. Similarly, the downsized system generally showed lower energy use when the
attic was cool between midnight and 7 AM. The interior relative humidity was slightly worse
(~1%) in the post period.

The fundamental conclusions from the study in brief:

e Monitored data from three case studies where oversized AC systems were replaced in
Florida saw only one case where energy use was lower — and this was in a system where
high evaporator flow rates largely traded off moisture removal for sensible heat
performance — not appropriate in a hot-humid climate. In the other two systems, energy
use was clearly increased in one system and about the same in the other. However, in
both of these two systems, comparison of the AC demand profiles showed that the
downsized systems indicated increased loads during afternoon and early evening hours in
agreement with the hypothesis that duct losses are overwhelming part-load gains to
machine performance.

e Relative humidity performance did not appear to be improved by downsizing. However,
this appeared largely due to the increase in per ton evaporator coil cfm in the post period.
This would argue in the future for retrofits of better sized air conditioners to be tied to
variable speed air handlers where the proper coil air flow can be readily selected.
Generally, post downsizing moisture removal performance appeared tied to the nominal
evaporator air flow per ton of rated capacity. However, greater return side duct leakage
due to increased run times from downsized systems can easily overwhelm other factors.

e Energy savings from rightsizing of modern higher efficiency central air-conditioning
equipment may be lower than earlier vintage machines due to diminished cycling losses
due to manufacturer focus on improvements to SEER which are inexpensively
accomplished through the use of post cycle fan delay and suspension of refrigerant
migration.

e Potential energy savings from current generation right-sized machines may average 2-3%
for systems with sealed duct systems with the ducts located within the conditioned space.
In the past this number was 5-7%.°

> This number is based on the implicit assumptions of typical cooling load factor (load/steady-state capacity) in the
SEER procedure of 50%. We further assume that cycling losses can only be reduced by 50% by improved sizing.

35



e Downsized machines with the duct systems located in attics may see that increases in
duct losses substantially exceed the savings in increased air-conditioning system part load
performance.

e While AC downsizing does not look to have large ramifications on energy consumption
for customers with ducts in attics, it does appear to have potentially larger impacts for
utilities during their peak generation periods.

e Downsizing air conditioners in a retrofit situation may be difficult without redesigning
the duct systems so that proper air flows can be maintained. The most straightforward
solution to this issue is to use variable speed air handlers so that proper flow can be
achieved. However reduced air velocities at the supply air grilles may dictate the need to
adjust grille blades/dampers or install new grilles to maintain adequate “throw” of the
conditioned air and entrainment of room air.

e Practically for future such studies of rightsizing, it is recommended that change-outs be
done in mid summer with adequate pre and post data. Given the findings from our case
studies, we suggest that a future study should examine right-sized machines in a home
with attic ducts and another with interior ducts. Variable speed air handlers should be
used so that flow can be made equivalent in the pre and post periods. Data should also be
taken on condensate, attic temperature, coil, return and supply temperatures to aid the
later data analysis.

While we can emphasize that this represents only three case studies where new air conditioners
were properly sized after being downsized, the observations fit with what is indicated by
simulation, reinforcing the idea that optimal machine sizing will be strongly impacted by duct
system leakage and duct location. Best results will be achieved with sealed duct systems and
with ducts inside the conditioned envelope or in crawlspace, basements or beneath cool attic
assemblies. Variable speed air handlers allow appropriate choice for coil air flow.
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APPENDIX A

Air Conditioner Sizing Calculations for Each Case Study Home
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Lakeland — Loads

“Rhvac- Rlu&lmﬂl] & Ugm Cammercial mr,nc Log:lt 7 = ! Efffe Softwiare Development, Inc. |
Florida Solar Enargy Center m z |
Cocom, FL 37003.5703 - : Fege ]
System 1 Summary Lc}ads
Com =5y ,,,,—_:_p = U Mo Jotal

@m”m == :g_r: = Duans— Los ClEains © - Gain

1.ﬁ.a¢m.-n Giazing- Em-gi-s pana. apara.bl& window, clear, 2204 8,675 ] 8.503 8,503

matal frama no brezk, sutdoor insect sereen with 50%
coverage, light color biinds at 45° with 100%
COVErage
10A-m: Glazing-Franch door, single pane clear glass, 35 4,568 0 2,568 2,568
metal frame no break, outdoor insect scraen with
100% coverage, Bght color blinds at 45" with 100%
COVErage
14-cm-0; Glazing-Single pana, operabla window, clear, 24 2,126 o 1.124 1,124
metal frame no braak, outdoor Insact screen with
100% coveraga, Hght color blinds at 45% with 100%
coverage
14-cm-0; Glazing-Single pana, operable window, clear, 8.2 354 1] 530 530
metal frame no break, outdoor insect screen with
100% coverage
104-m: Glazing-French door, single pane clear glass, 24 1,242 o 1,210 1.210
metal frame no break, cutdoor insect screen with
100%: covarage i

11HM: Door-Polystyrens Core 42 375 o 345 345
13A-5ocs: Wall-Block, board insulation only, R-5 board 1845.8 7.542 0 3068 3968 |

insulation, open core, siding finish

128-0sw: Part-Frama, B-11 insulation in.2 x 4 stud cavity, 4358 845 o 845 B45

no board insulation, siding finish, wood studs

15C-30: Roof/Cailing-Under attic or knea wall, Vantad 2516.9 2,495 Q 3302 3,302

Attic, No Radiant Barrber, White or Light Colar
Shingles, Any Wood Shake, Light Metal, Tar and
Gravel or Membrane, R-30 insulation
22A-ph-t: Floor-Slab on grade, No‘edge insulation, no 276 11,820 0 0 o
insulation below flocr, tile covering, passive, heavy
magiat soll S B ___ D e |
Subitotals for struciure: 40,253 4} 22 (05 22,385
Peopla: 5 1.000 1,150 2,150
Equipment: o 1,200 1,200
Lighting: 0 0 o
Ductwork: 7.724 1,200 8,188 8,388
Infiliration: Winter CFM: B8, Summar CEM: 44 2572 1,386 788 2,184
Ventilation: Wintar CFM: O, Summer CFM: 0 4] 1] o o
AEDEweussion: e S — I Q 1.310 1,310
Systam 1 Load Totals: 50,849 3588 35011 38,607
‘Check Eruras. : e L e e e T L PR

Supply CFM: 1.604 CFM Per Squara it 0.837
Squarse ft. of Room Araa: 2517 Squara #. Per Tan: 847
Volume {ft*) of Cond. Space: 26,345 Adr Turnover Rats (per hour): ar
I Logdg e e 1:’-“:: .!:r- = e TS T =
Total Heating Renuirad With Outside Air; 50848 Bluh 50545 MEH

Total Sensible Gain; 35,011 Biuh 81 %

Taotal Latent Gain; A53E Biyh g3 %

Total Cooling Regquired With Outsida Air; 38,807 Biuh 3.22 Tons (Based Oni'Sensible + Latens)

3.85 Tons (Based On 75% Sensible Capacity)
[Metesstagt e e e e s A s s et s ] .,
“Calculations a.re bued cm E'h edition c-f ACCA Manual .J

All computed resulls are estimates-as bullding use and weather mgy vary,

Be sure {0 select a Unit that meets both sensible and latant kbads.

Thurscay, August 25, 2004, 10:05 &AM
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Merritt Island — Loads

matal frama no break. ground reflectance = 0.23,
outdoor insect screan with 50% coverage, madium
color blinda at 45" with 50%. coverage

1A-cm-o. Glazing-Singée pans, operable window, clear,
metal frame no break, outdoor insect screen with 50%
caverage, light color blinds at 45° with 100%

coverage

1A=cme0: Glazing-Singe pane, oparabls window, clear,
matal frame no break, outdoor insect scresn with
100% coverage, light color biinds al 45" with 100%

coverage
| 1B-cm: Glazing-Single pans window, fixed sash, clear,
matal frams no break. ouldoor insect screen with
100% coverage
| VA-cm-o: Glazing-Single pans, operable window, ciear,
mietal frame o break. outdoor insact screen with
100%, coverage
10A-m: Glazing-French door, single pane clear glass,
mrtal frame no braak, ground reflectance = 0.23,
tuldoot inasct seresn with 100% coverige, madem
color blinds at 45° with 50% coverage
1IM: Core
13A-50c8: Wall-Block, board insulation only, B-5 board
| ingudation, open core, siding finksh
| 128-0sw: Part-Frame, R-11 insulation in 2 x 4 stud cavity,
no board insulation, siding finish, wood studs
16C-18: Aool/Cailing-Undar attic or knee 'wall, Vented
Attic, No Radiant Barrier, White or Light Coler
Shingles, Ary Weood Shake, Light Metal, Tar and
Gravel or Membrane, R-19 insulation
Z2A-ph: Floor-Siab on grade, Mo edge insulation, no
ingulation below flacr, any floor cover, passive, heavy
moist 8ol
Subtotals for structurs:
Poopla:
Eguinment
Lighting:
Ductwork:
| Infitration: Winter CFM: 102, Summer CFM: 51
Ventiation: Winter CFM: 0, Summar CFM: 0
System 1 Load Totals:

5.3

(-]

40.2

17.5
14246

380.1
22572

4084

2014

123
53

aas

9,900

31,343

1,154

1,021

123
273

4,424

3.235

2224

1,188

123
2723

4 424

16,463
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Jacksonville — Loads

R 1

.Rhvac - Residential & Light- Commerclal HVAC Loads = - Elite Software Development, Inc. .
Florida Solar Energy(:enter BT e s e B i
Cocoa, FL 829225703 = =~ =~ G Bty : Page 1
Sysrem 1 Mam Summary Loads ’IAC_&SONUL&E_-.

; i - ? =X wi-Total |
: e : Gain|
1D-cr-o: Glazing-Double pane, operable window, clear, 187.1 6,187 0 4,856 4,856 |

metal frame no break, outdoor insect screen with 50%
coverage, light color blinds at 45° with 100%
coverage
| 1E-cm: Glazing-Double pane window, fixed sash, clear, 27 708 0 594 594

metal frame no break, outdoor insect screen with
| 100% coverage
1D-cm-o: Glazing-Double pane, operable window, clear, 58.8 1,944 0 1,028 1,028
metal frame no break, outdoor insect screen with
100% coverage, light color blinds at 45° with 100%
| coverage |
10B-m: Glazing-French door, double pane clear glass, 40.2 2,215 0 1,200 1,200
[ metal frame no break, outdoor insect screen with
100% coverage

| 11G: Door-Panel 21 431 0 340 340
12B-0bw: Wall-Frame, R-11 insulation in 2 x 4 stud cavity, 1296.4 4,779 0 2,100 2,100
no board insulation, brick finish, wood studs
12B-0sw: Part-Frame, R-11 insulation in 2 x 4 stud cavity, 264 512 0 512 512 |
no board insulation, siding finish, wood studs
| 16B-30: Roof/Ceiling-Under attic or knee wall, Vented 2272 2,763 0 3,926 3.926

Afttic, No Radiant Barrier, Dark Asphalt Shingles or
Dark Metal, Tar and Gravel or Membrane, R-30

insulation [
| 22A-ph-t: Floor-Slab on grade, No edge insulation, no 223 11,510 0 0 0 |
insulation below floor, tile covering, passive, heavy
moist soil R =
Subtotals for structure: 31,049 0 14,556 14,556 |
People: 5 1,000 1,150 2,150 |
Equipment: 0 1,200 1,200 |
Lighting: 0 0 0 |
Ductwork: 6,600 1,198 6,588 7,786
| Infiltration: Winter CFM: 102, Summer CFM: 51 4,254 1,663 1,063 2,728
| Ventilation: Winter CFM: 0, Summer CFM: 0 0 0 0 0
System 1 Main Load Totals: 41,903 3,861 24,557 28,418

e

Supply CFM: 1117 e “CFM- Per Square ft.:
Square ft. of Room Area: 2,273 Square ft. Per Ton:
| Volume (ﬂa) of Cond Space Air Turnover Rate (per hour)

Total Heatang Hequared Wllh Out51de A{r 41 ,903 Btuh 41.808 MBH .

Total Sensible Gain: 24,557 Btuh 86 %
Total Latent Gain: 3861 Biuh 14 %
Total Cooling Required With Outside Air: 28,418 Btuh 2.837 Tons (Based On Sensible + Latent)

2.73 Tons (Based On 75% Sensible Capacity)

[ Caicu[atlons are based on 8th edmon of ACCA Manua! it
All computed results are estimates as building use and weather may vary.
. Be sure to select a unit that meets both sensible and latent loads.

Thursday, August 26, 2004, 10:08 AM
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North Port — Loads

i & Lfg‘ht t.[uwg:; Coads 2 Elfte Software Devalopment, Inc. |
S B =G T e S
1 2 L] l . F 1 |
Sysram 1 Summary Loads Hmm ma'_
== S ol |
| [Dascr P Oua : G Gain |
| 1.-=. -CIT0: E!a.zing-smgla pane, a-parabln window, clear, 4 152 a 150 150
metal frame no break
1A-em-o: Glazing-Single pane, oparabls window, claar, 180.1 6,862 1] 5,073 5.073
metal frame no break, outdoor insect seresn with 50%
coverage, light color blinds at 45° with 75% coverage
110: Doar-Polystyrene Care 385 344 0 328 F2a |
13A-400s: Wall-Block, board insulation only, A-4 board 1275.5 5472 4] 3158 3158 |
insufation, open core, siding finish
12B-Dsw; Part-Frame, R-11 insulation in 2 x 4 stud cavity, 2801 544 o 544 544
ez beard insulation, siding finish, waod studs
13A-4ocs: Part-Block, board insulation only, R-4 board 81.% 234 o 224 234
insidation, open core, siding finish
16C-30: RoolCatling-Under attic or knee wall, Vented 2032.8 1,952 o] 2732 2. 752

Attic, No Radiant Barrier, White or Light Calor
Shingles, Any Wood Shake, Light Metal, Tar and
Gravel or Membrane, R-30 insulation

22A-ph-t: Floor-Slab on grade, No edge insulatian, no 200 8,148 a 0 o
insulation below ficor, tile covering, passive, heavy I
micist soil

Subtotals for structure: 23,708 1] 12,218 12218
Paople: 4 800 820 1720 |
Equipmant: 0 1.200 1.200
Lighting: 0 0 ]
Dructwark: 3.053 1,144 4187 5,331
Infiltration: Winter CFM: 42, Summer CFM: 0 1,417 1] 0 0
Ventilation: Winter CFM: 50, Summer GFM: 50 1,648 1,744 834 2678 |
System 1 Load Totals: 0,727 3638 18,458 23,147

SF‘ - - M Per Square .:
Square ft. of Roam Area: 2,032 Sguara 1. Per Tor:
Volume (ft%) nf Cond. Space: 19 TiT Air Turnaver Rate (per hour): 2.5

Tatal HaatlngFIaQuIrad With Outsice A

Btuh -
18,459 Btuh B4 %

Teotal Sensible Galn:
Total Latent Gain: 2588 Bhun 15 %
Total Cooling Requirad With Cutsida Afr: 23,147 Bfuh 1.93 Tons (Based On Sensible + Latant)

2.16 Tnna (Based 'L'.}n ?5% Samuble Capacﬂy}

' ta.k:uil.tlonn e basad o I edition of ACCA Manual J.
Al computed results are estimates as building use and weather may vary.
Ba sure 10 select a unit that meets both sensible and latent loads.

Thursday, August 25, 2004, 10:00 AM
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APPENDIX B

ARI Performance for the Original and Properly-Sized Air Conditioning Systems

44



Lakeland — Original

Unitary Air-Conditioner

Program & Product Identifier

T'oday's Date

Created Date:

Last Modified Date
Status:

Obsolete:

Manufacturer

4RI Reference Number:
ARI Progranu:

ARI Type:

I'rade/Brand Mame
NAECA Designation;
Outdoor Model Number:
Indoor Unit{s):
Ventilation Rate:
Product Performance Ratings
ARI Rating

Cooling Capacity (Btuh);

SEER Rating (Cooling):

Footnotes

OO0 2003 ar O04:04 PM
Active

No
COMFORTMAKER
[ 749395

Al

RCU-A-CH

CAC Series

Yes
CACZo0A(GIKA®*
l.'.l.'_'_'\( ﬁ.i’_la-f- & &

58500

11.60

Data management & Intermat services are provided by

AL

F

45

F

Wi




= Back

Lakeland — New

Unitary Air-Conditioner

Program & Produoct ldentifier

Today's Date

Created Date:

Last Modified Date:
Status:

Obsolete:

Manufacturer:

ARI Reference Number:
ARI Program:

ARI Type:

Trade/Brand Name:
NAECA Designation:
Outdoor Model Number:
Indoor Unit(s):
Ventilation Rate:
Product Performance Ratings
ARI Rating

Cooling Capacity (Bruh):

SEER Rating (Cooling):

Footnotes

46
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Bl

Active

No
COMFORTMAKER
451613

AC

RCU-A-CB

CAC Series

Yes
CAC242A(GIKC*
'E'Gx_-:_s LL 2 L]

Data management & Internet sarvicas are providad by
Intestek

#>
"‘

B
A

¥
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Merritt Island — Original

Certificate of ARI-Certified Performance

The following
Single Phase, Spilt System: Air-Cooled Condarsing Unit, Cail with Blowar
Cutdoor Uinit Model Mumbar: 2TTR204281
combingd with
Indoor Unit Model Number, TWEQ48P13
manufacturad by THE TRAME COMPANY
under the Trade/Brand Mama: XR12

has been rated in accordance with

&and is cartified by the Air-Conditloning and Refrigeration Institule to mest

the foliowing product parformance ratings:

Cociing Capacity (8tuh): A4500
SEER Rating (Gocling): 12.75
* Veluntadly revised, uniess accompanied with & WAS in which case Mg change is invalurary

ARl Reference #: 316982
Ptcaritas+l Taday's Date: 08 f 28 /06
Status: Discontinued

Targagh Teibnaion
Eartifalatien by MATT

CERTEFIED AATINGS ARE VALID ONLY FOR THE PARTICULAR COMBINATION OF INDOOR AND OUTDOGR UNITS LISTED IN THE
AIR-CONDITICNING AND REFRIGERATION INSTITUTE'S DIRECTORY OF CERTIFIED EQUIPMENT, VISIT WhwW ARIDIRECTORY ORG TO VERIFY
THAT THIS COMBINATION IS AN ASTIVE LISTING AND THE DATA LISTED ON THIS CERTIFIGATE IS ACCURATE, SEASCH ONTHE ARI
REFERENCE # TO QUICKLY LOCATE THIS COMBINATICN IN THE DIRECTORY.

TEAME AND CONDITIONS

Thig Cersficale shall be weed for indnadunl, pedscnal, and sonfdential relersnce Pufpcses ondy, and may b used only pursuant &g the terms snd
cofdbions ksted. This Certificate and the coments henss! are propretary peoducts of ARL The contents of this Cerficals may net, in whole of in part, be
"ERrOcUCed; copled, diesaminated: oniered Mo & computer dtabaSE; of Sihefwiss Liized, in BNy KM Of Manner o by any maans, axcept for the user's
Irdividial, pereanal and confidental reference. Cantained heren ate praduct informasan ang serfed ratngs. AR does not endorse the productis) hsted in
s Cortificate and makes no repMBenIaBcNs. waranlies of guatanises s 1o, and pssurnas no responsibdity for, the productis) Bsted in theay Sermficaln
ARl papressty disclaims afl kabdny fes damages of any king ansing cut of the uee of periarmance of B PrOgUSIE), of The tnauthorized pllerybicn of dats,
wied in mhis Certificasy
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Merritt Island — New

Certificate of ARI-Certified Performance

Tha following
gingle Phase, Split System: Air-Coocled Condensing Unit, Coll with Blower
Outdoor Uinit Modal Number: 2TTR2030A1
combined with
Ingoer Unit Modet Mumber: TWEQ30P13
manulaciured by: THE TRANE COMPANY
undar the Trade/Brand Name: XR12

has bean rated in accordance with

and is cartilied by the Air-Conditioning and Refrigeration Institute to mee

the faliowing product perfarmance ratings:

Cooling Capacity (Btuh); 20400
SEER Rating (Cooling): 12.50
* Weduntadly revised, unless accompanisd with 8 WAS in which case e Shange is volurtary,

ARl Reference &: 256874
e Today's Date: 08 /29 /05
o~ PEgroRMANCE Status: Discontinued
Through Technsisa

Cartsfigation by NATE

CERTIFIED RATINGS ARE VALID DMLY FOR THE PARTICULAR COMBINATION OF INDOGH AND DUTDOOR UNITS LISTED IN THE
AIR-CONDITIONING AND REFRIGERATION INSTITUTE'S DIRECTORY OF CERTIFIED EQUIPMENT. WISIT WWW ARIDIRESTORY ORG TO VERIFY
THAT THIS COMBINATION IS AN ACTIVE LISTING AND THE DATA LISTED ON THIS CERTIFICATE IS ACCURATE. SCARCH OM THE AR
REFERENCE # TQ QULACKLY LOCATE THIS COMBIMNATION IN THE DIRECTORY

TERMS AND COMNDITIONS

Tres Centlicale shal be used lor individual, persanal, ard confidential referance puposes only, and may be used cnly pursuand 1o e b and
conditicns igted, This Cartificale and the contents herecd an propristiry products of ARL The contants of thia Certificase may nok in wheds o in past, bs
Teproduted oipaed, dissemnaled enlied into A computer databuine: or pEheraise utilized. i darry e or manner of By any Means, axcept for e LSS
ngradual, personal and confidential reference. Cortained horein an product infoemation and certified ratings. AR dops nat endorse e proguctis) isted in
this Cemficate and makes no repseSentatians, wAMantes of GUEFANMESS &8 15, and SEsumes no respensibility e, the product(s) isted in this Cemnficase
AR exprossly caclamy ol atiity for camages of any kind &nising out of the use o pedormance of the produmetis), &r e unaushorized alsmton of dans
liated in this Cerifcale
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Jacksonville — Original

Certificate of ARI-Certified Performance

The following
Single Phase, Spiit System: Heat Pump with Remate Outdoor Unit-Air-Source
Outdoor Unit Modal Number: 12HPB48-"P
combined with
Indoor Unit Model Mumber: CB25M-51°P
manutaciured by: LENNOX INDUSTRIES, INC.
under the Trade/Brand Name: Value 12

has been raled in accordance with

and is cerified by the Alr-Conditioning and Refrigeration Institits ta mest

the following product performance ratings:

Cocling Capacity (Btuh): AT000
SEER Rating (Cooling): 12.05
Heating Capacity (Bluh) @ 47 *F: 48000
Reglon IV HSPF Rating {(Heating): 7.3
Heating Capacity (Biuh} @ 17 *F. 20000
" Weluniarily revised, urdess accompanied with & WAS in which casa the change = mvaluriary

ARI Reference &: 29808
i Escisiriga T'Ddljl"ﬂ Datbe: 08 /29 /06
ey PpgrgRMANCE Status: Discontinued
@ ERERTIFIEY
‘rwngh-'fnhun

Cartfinatmat by WATE

CERTIFIED AATINGS ARE VALID DMLY FOR THE BARTICULAR COMBINATION OF INDOOR AND QUTBOOR LNITS LISTED ™ THE
AIR-CONDITIONMNG AND REFRIGESATION INETITUTE'S DIRECTORY OF CERTIFIED ECUIPMENT, VISIT WWWARIDIRECTORY.ORG TO VERIEY
THAT THIS COMBINATION 15 AN ACTIVE LISTING AND THE DATA LISTED ON THIS CERTIFICATE 1 ACCURATE SEARCH ON THE AR
REFERENCE # TO OUICHLY LOCATE THIS COMEINATION IN THE DIRECTORY.

TEAME AND CONDITIONS

This Cariificase shall be ussd %r indhidual, perscnal, and confdental relarinoe PufpGses ondy, and may be used anly pursuant i the terms and
cengiticns listed, This Canicats and te contents hesgof are PrEpiatary products of ARI The conlents of this Cemfcaty may not, in whole of i par, be
reproduced. copead: dispeminated; entened intg B compuier dalnbase; or ofervwese utlized, in &y fom o manner or by BNy means, pocep for the users
ingividaal, parscnal and confdential reference. Contained Rarpin are Product infoemation and s cevtified ratings. AR does not endorse the progdusiise) listed
In ihia Cendoain and makes ne TERTERENMANOAS, WAFTARSES Or Qulraniess A 19, and assumies e respandibility for, the peoductis) ksted n they Cenificate
ARI dxpiersly disclaims all kability for darmages ol any kind armng out of the Lse or parlsemance of the productig), or the unauthanized aleraSen of cata,
ksa8d in tie Cartificaty
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Jacksonville — New

Certificate of ARI-Certified Performance

Thae Tollorwing
Single Phase, Spit System: Heat Pump with Remote Outdoor Uni-Alr-Source
Quitdace Unit Model Mumber: 12HPB36-"P
cormbingd with
Indace Unit Modal Numbar: CB29M-41'F
manufaciured by: LENNOX INDUSTRIES, INC
undor the TradeBrand Name: Valus 12

has bean rated in accordance with

and is cerified by the Air-Conditioning and Retrigeration Insbiute o meet

the following product pariormancs ratings:

Cooling Capacity (Btuh): 33000
SEER Rating {Cooling): 12.05
Heating Capacity (Btuh) & 47 "F. 33200
Regeon I HSPF Rating (Heatingl: 7.5

Heating Capacity (Btuh) @ 17 *F: 21200

* Wphminrity revised, wniess accompaned Wi a WAS n wfach cate the Shange m moluniany

ARI Reference &: 530845
Lt it Today's Date: o9 / 07 /06
- F'[g g Status: Discontinued
@ LEngHEu
"\il-'-"m
Carif g iy RATL

CEATIFED AATINGS ARE VALID ONLY FOR THE PARTICULAR COMBINATION OF INDCOR AND DUTDOCH UNITS LISTED IN THE
ARCONDITIONMNG AND REFRIGERATION INSTITUTE & DIRECTORY OF CERTIFIED ECQUIPMENT. VISIT WIWW.ARIDIRECTORY OR] TO VERIFY
THAT THIS SOMBINATION 15 AN ACTIVE LISTING AND THE DATA LISTED OM THIS CERTIFICATE IS ACCURATE. SEARCH OM THE ARI
REFERENCE & TO OUICKLY LOCATE THIS COMBINATION IN THE DIRECTORY

TERMS AND CONDITIONE

This Corficans ahal Do Used $or MEniOuNl, DEBONEL 83 CONBOENEM relence Curposes oy, and may be ueed only purmaan 1o ™e isma and
oondtione inled. This Carificate and the comama heesol ans proptistany prodiscts of AR0, Tha comesis of Tia Comfizatse miy not in whole or in par, be
repeoUcEd; Doped: daseerenates; ETEred Mo § compuisT Catabass; of cievaig ubined, N any o oo mannar o by ey maas, aecect i the ueeTL
riadiual, personal and cordagnial falenenoe. Mﬂdwmwmnm;ﬂd centlad ratnge. AR doss noi andons the peoduciy) lxied
o Fun Carticate and makes Ao epreesniaicnd, warmanties & g an, e y A, tha prosdostOn) Bates in s Corvlhoals.

AR mapreas®y disclainm ol habdy for damages of any kind srsng out url.rrluuufp-lﬂo-'mm-ﬂlh pl'Dﬂl."I[l}\.-Gl thé urauthcrized alembon ol data,
Ested. m T Catilicain
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North Port — Original

Unitary dir-Source Heat Pump

Program & Product Identifier
Today's Date

Created Date:

Last Medified Date:
Status:

Obsolete;

Manufacturer:

ARI Reference Number:
ARI Program:

ARI Type:

Trade/Brand Name:
NAECA Designation:
Outdoor Medel Number:
Indoor Unit{s):
Ventilation Rate:
Product Performance Ratings
ARI Rating

Cooling Capacity (Bruh):
SEER Rating {Cooling}:
Heat Pump Only

High Temp 47° F
Heating Capacity (Bruh):
Region IV HSPF Rating:
Low Temp 17°F
Heating Capacity (Btuh):

Sound Rating
ARI Sound Rating (dB):;

Footnotes

O7/20/2004 04:08:16 PM

11772003 at 10:49 AM
Deleted after next directory
No

RULD AIR CONDITIONING DIVISION
229697

HP

HRCU-A-CE

Ruud UPMC Series

Yes

UPMC-0421A
UBHK-24+RCHJ-48A1

41000
13.20

42000
8.65

27000

DCats manegement & nterne! senvices are provided by
Interek

Wira

[ el
184
.-:"l
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North Port — New

Certificate of ARI-Certified Performance

The foligwing
Sirgle Phase, Spit System: Heat Pump with Remate Outdoor Unit-Ar-Source
Cutdoos Unit Model Number: RPMD-030JAZ
combined with
Indoor Unit Model Number, REBHK-21+RCHA-3541
manutactured by: RHEEM MANUFACTURING COMPANY
under the Trade/Brand Mame: Rhesm APMD Sarigs

has been rated in accordance with

and is centifigd by the Alr-Conditioning and Refrigeration Institute to maet

ths following product performance ratings:

Cooling Capacity (Btuh): ZTE0Q
SEER Rating (Cooling): 13.75
Heating Capacity (Btuh) @ 47 °F: 27800
Region IV HSPF Rating (Heating): 8.25
Heating Capacity (Btuh) @ 17 °F: 16800
" Veluntasity revised, urless accompanied with o WAS in which coas ire change g involantary.

ARI Reference #: 474724
et Today's Date: 08/ 28 /06
Status: Discontinued

Terawgs Spchricen
Gyt by MATE

CERTIFIED AATINGS ARE VALID ONLY FOR THE BARTICLILAR COMBINATION OF INDOOR AND OUTDOOR UNITS LISTED IN THE
AlR-CONDITIONING AND REFRIGERATION INSTITUTE'S Din ECTORY OF CEATIFIED EQUIPMENT, VISIT WWW ARIDIRECTORY.ORG TO VERIEY
THAT THIS COMBINATION IS AN ACTIVE LISTING AND THE DATA LISTED ON THIS GEATIFICATE 15 ACCURATE. SSARDH o8 THE ARI
REFERENCE # TO QUICKLY LOCATE THIS COMBINATION I8 THE DIRECTORY.

TERMS AND COMNDITIONS

Thig Cenificate ahall be used for individyal, Farsanal, and conlidential refenence purposes ordy, and may be ueed anly pursuant % the terms and
tonginona listed, This Cermficals &nd the conisnts hereod are prophetasy products of ARL The contents of fig Cariticats My ned, in whols of it part, be
redftduced. coped; dissemnated: enterad into a Comilier Qatabass; or othensies uilized, o &Ny KM oF MARRET or by &My maans, sxbept for e users
ndividual, parsonal and conSdantal reference. Contained hergl are Brocust infaimation and s cernfied ratings. AR goes nat endarss e prodect(s) lised
In this Cevrnficate and makes no 'epresentations. waranties or guaranbess os 1o, and gssurnes N resparsbility for. the peroduct{s) lis2ed i this Cestificass
ARI pupeesly disclaima sl kabilsy foe damapes of Any Nt ansing oul of the use or pevformance of the prodiet(s), or v unsuthrized aleration of cata
bsted i Tile Cenlificabe.
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