Contract Report

Evaluation of the PV Systems at Martin Power Plant

FSEC-CR-1011-98

Submitted to: Florida Power and Light Co. P.O. Box 14000 M/S SPE/JB Juno Beach, FL 33408-0420

Submitted by: Florida Solar Energy Center 1679 Clearlake Road Cocoa, FL 32922-5703

Funded by: Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-0752

> July 14, 1998 (Revised July 23, 1998)

Evaluation of the PV Systems at Martin Power Plant

Submitted to: N.H. "Joe" Chau, P.E. Sr. Electrical Engineer Protection & Control Florida Power & Light Company P.O. Box 14000 M/S SPE/JB Juno Beach, FL 33408-0420

Submitted by: Jennifer Skislak, Energy Analyst Florida Solar Energy Center 1679 Clearlake Rd. Cocoa, FL 32922

Funded by: Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-1127

> FSEC-CR-1011-98 Contract No. AV-5590 Acct. No. 26-57-892

Tests Performed June 3, 1998 Report Submitted July 14, 1998 *Revised July 23, 1998*

TABLE OF CONTENTS

INTRODUCTION
SITE DESCRIPTION
System 1 – Sovonics
System 2 – Mobil
System 3 – Kyocera
System 4 – Kyocera7
System 5 – ARCO
System 6 – Hoxan
SYSTEM PERFORMANCE
System 1 – Sovonics
System 2 – Mobil
System 3 – Kyocera
System 4 – Kyocera
System 5 – ARCO15
System 6 – Hoxan
Control Room
RECOMMENDATIONS
General Conditions
System 1 – Sovonics
System 2 – Mobil
System 3 – Kyocera
System 4 – Kyocera
System 5 – ARCO19
System 6 – Hoxan
APPENDIX A Array IV Curves
APPENDIX B Array Configurations and Module Serial Numbers

LIST OF FIGURES

Figures 1 and 2. Martin Power Plant PV Systems
Figure 3. Array Field Layout
Figure 4. Grid Interconnect and Metering Equipment
Figure 5. Sovonics Array
Figure 6. System 1 Source Circuit Junction Box
Figure 7. System 1 Combiner Box
Figure 8. System 1 AC Junction Box
Figure 9. Mobil Array
Figure 10. System 2 Source Circuit Junction Box
Figure 11. System 2 Combiner Box
Figure 12. System 2 AC Junction Box
Figure 13. Kyocera Array
Figure 14. System 3 Source Circuit Junction Box
Figure 15. System 3 Combiner Box
Figure 16. System 3 AC Junction Box
Figure 17. Kyocera Array
Figure 18. System 4 Source Circuit Junction Box7
Figure 19. System 4 Combiner Box7
Figure 20. System 4 AC Junction Box
Figure 21. ARCO Array
Figure 22. Tracker
Figures 23 and 24. Hoxan Array9
Figure 25. System 6 Source Circuit Junction Box
Figure 26. System 6 Combiner Box
Figure 27. Typical Sovonics Module Delamination
Figure 28. Mobil Array Module 4 Corrosion12
Figure 29. Mobil Array Module Delamination
Figure 30. ARCO Array Typical EVA Discoloration15
Figure 31. Control Room
Figure 32. Data Acquisition System

LIST OF TABLES

Table 1. Performance Measurements	1
Table 2. Modules Showing Signs of Delamination	10
Table 3. System 1 (Sovonics) System Performance	11
Table 4. System 2 (Mobil) System Performance	13
Table 5. System 3 (Kyocera) System Performance	13
Table 6. System 4 (Kyocera) System Performance	14
Table 7. System 5 (ARCO) System Performance	15
Table 8. System 6 (Hoxan) System Performance	16

INTRODUCTION

On June 3, 1998, researchers from the Florida Solar Energy Center (FSEC) conducted a field test of six, independent photovoltaic (PV) systems at the Florida Power and Light (FPL) Martin Power Plant.

The weather conditions during test were hazy with a few clouds. This test was performed at the request of FPL to determine the operational status of the PV systems and to provide recommendations for upgrading or repairing these systems. Of the six systems, three were fully operational and were providing power to the grid. Figures 1 and 2 below show the Martin Power Plant PV systems.

Figures 1 and 2. Martin Power Plant PV Systems

Several performance measurements were obtained for each array, using an IV curve tracer and then scaled to 1000W/m² and 45°C. The average peak power for each of the systems is given in the table below.

System	Module Manufacture	Normalized Array Rating 1000 W/m ² and 45°C	Status
1	Sovonics, P201	1755Watts	Off-line, Ground Fault
2	Mobil, RA180-36	3396 Watts	Operational
3	Kyocera,LA661K94	3004 Watts	Operational
4	Kyocera, LA661K94	3047 Watts	Operational
5	ARCO, M52-S	5947 Watts	Off-line, Partially Installed
6	Hoxan, H4810	4399 Watts	Off-line, Inverter Problems

Table 1. Performance	Measurements
-----------------------------	--------------

In addition, each system was visually inspected and evaluated. The evaluations and conditions noted for each system are described separately in the *System Performance* section.

SITE DESCRIPTION

The Martin Power Plant PV site is located east of Indiantown near Lake Okeechobee at the main FPL generation plant for Central Florida. The PV facility consists of six grid-connected systems installed in the late 1980s and early 1990s. Figure 3 below shows the arrays configured in two rows and identified by module manufacturer and system number.

Each of the systems is described separately in the following subsections.

Figure 3. Array Field Layout

The control room, shown north of the arrays, houses the power conditioning equipment, dc summing junction boxes, disconnect switches, monitoring equipment and data acquisition system (DAS). The output of the PV power plant is connected to a three-phase grid situated east of the control room (Figure 4).

Figure 4. Grid Interconnect and Metering Equipment

System 1 – Sovonics

The array consists of 180 Sovonics P201 modules, mounted on a galvanized angle iron rack at a fixed tilt of 26 degrees (Figure 5). The array is configured in twelve strings of fifteen modules

in series, which are divided evenly between the positive and negative source circuits. The original array rating at standard test conditions (STC) of 1000 W/m² and 25°C was 4,140 Watts. The nameplate rating of the individual Sovonics modules at STC is 21 Watts peak, Voc=22 volts, Isc=1.6 amps, Vpp= 16.3 volts, and Ipp= 1.3 amps. The array physical configuration and module serial numbers are given in Appendix B.

Figure 5. Sovonics Array

The source circuit junction box, mounted under the array, contains the blocking diodes, fuses, surge protection equipment and disconnect switches (Figure 6). The output of the array is connected to the combiner box in the control room (Figure 7). This box contains the fuses and monitoring equipment for Systems 1 and 2.

Figure 6. System 1 Source Circuit Junction Box

The system utilizes a 4-kW Omnion, Series 2200, Model # 04-6-1 Serial Type #1025 inverter connected to one phase of the three-phase grid. It has a dc input range of +/- 225 Vdc and an ac output of 120 Vac, 35 Aac, 60 Hz. An ac junction box, located next to the inverter, houses the fuses, surge protectors and monitoring equipment (Figure 8).

Figure 7. System 1 Combiner Box

Figure 8. System 1 AC Junction Box

System 2 – Mobil

This array consists of 20 Mobil RA180-36 modules, mounted on a galvanized pipe and angle rack at a fixed tilt of 26 degrees (Figure 9). The array is configured in four strings of five modules in series. The original power rating for this module could not be determined but typically these modules have been rated at 180 Watts peak. Assuming the 180-Watt rating, the initial rating for the array was about 3600 Watts. The array physical configuration and module serial numbers are given in Appendix B.

Figure 9. Mobil Array

The source circuit junction box, mounted under the array, contains the blocking diodes, fuses, surge protection equipment and disconnect switches (Figure 10). The output of the array is connected to the combiner box in the control room (Figure 11). This box contains the fuses and monitoring equipment for Systems 1 and 2.

Figure 10. System 2 Source Circuit Junction Box

Figure 11. System 2 Combiner Box

The system utilizes a 4-kW Omnion, Series 2200, Model # 04-6-1 Serial Type #1025 inverter, which is connected to one phase of the three-phase grid. It has a dc input range of +/- 225 Vdc and an ac output of 120 Vac – 35 Aac – 60 Hz. An ac junction box, located next to the inverter, houses the fuses, surge protectors and monitoring equipment (Figure 12).

Figure 12. System 2 AC Junction Box

System 3 – Kyocera

The array consists of 42 Kyocera LA661K94 multi-crystalline modules manufactured in 1990 (Figure 13). The 66-cell modules are mounted on a galvanized "I" beam rack at a fixed tilt of 23 degrees. The array is configured in six strings of seven modules in series, with the strings connected three in parallel to form the two bipolar sub-arrays, +/- 232 Vdc.

Figure 13. Kyocera Array

The original array rating at STC was approximately 3,900 watts. The nameplate rating of the individual Kyocera modules at STC is 93.6 Watts peak, Voc=31.0 volts, and Isc=3.02 amps. The array physical configuration and module serial numbers are given in Appendix B. The source circuit junction box, mounted under the array, contains the blocking diodes, fuses, surge protection and disconnect switches (Figure 14). The output of the array is connected to the combiner box in the control room (Figure 15). The combiner box contains the fuses and monitoring equipment for Systems 3 and 4.

Figure 14. System 3 Source Circuit Junction Box

Figure 15. System 3 Combiner Box

This system utilizes a 4-kW Omnion, Series 2200, Model # 04-6-1 Serial Type #1025 inverter, which is connected to one phase of the threephase grid. It has a dc input range of +/- 225 Vdc and an ac output of 120 Vac - 35 Aac - 60 Hz. An ac junction box, located next to the inverter, houses the fuses, surge protection and monitoring equipment (Figure 16).

Figure 16. System 3 AC Junction Box

System 4 - Kyocera

The array consists of 42 Kyocera LA661K94 multi-crystalline modules manufactured in 1990 (Figure 17). The 66-cell modules are mounted on a galvanized "I" beam rack at a fixed tilt of 23 degrees. The array is configured in six strings of seven modules in series, with the strings

connected three in parallel to form the two bipolar sub-arrays, +/-232 Vdc. The original array rating at STC is approximately 3,900 watts. The nameplate rating of the individual Kyocera modules at STC is 93.6 Watts peak, Voc=31.0 volts, and Isc=3.02 amps. The module physical configuration and serial numbers are given in Appendix B.

Figure 17. Kyocera Array

The source circuit junction box, mounted under the array, contains the blocking diodes, fuses, surge protection equipment and disconnect switches (Figure 18). The output of the array is connected to the combiner box in the control room (Figure 19). This box contains the fuses and monitoring equipment for Systems 3 and 4.

Figure 18. System 4 Source Circuit Junction Box

Figure 19. System 4 Combiner Box

This system operates with a 4-kW Omnion, Series 2200, Model # 04-6-1 Serial Type #1025 inverter, which is connected to one phase of the three-phase grid. It has a dc input range of +/- 225 Vdc and an ac output of 120 Vac – 35 Aac – 60 Hz. An ac junction box, located next to the inverter, houses the fuses, surge protectors and monitoring equipment (Figure 20).

Figure 20. System 4 AC Junction Box

System 5 - ARCO

The array consists of 256 ARCO M52-S, Part # 004013985 single crystal modules manufactured in 1983 (Figure 21). The 36-cell modules are installed on a single-axis tracker, which is currently positioned horizontally (Figure 22). The axis of rotation is north to south, which allows for yearly array tilt changes but does not allow for daily tracking. The array physical configuration and module serial numbers are given in Appendix B.

Figure 21. ARCO Array

Figure 22. Tracker

This system is not connected to an inverter. The system was moved from another location and was never completely reinstalled. A DECC, model # 61289-54, three-phase inverter was placed in the control room, but the wiring was not finished.

System 6 – Hoxan

The array consists of 112 Hoxan H-4810 modules (Figures 23 and 24). The 36-cell modules are mounted on a Unistrut rack at a fixed tilt of 25 degrees. The modules are configured in eight strings of fourteen modules in series, with the strings connected four in parallel to produce two bipolar sub-arrays, +/- 135 vdc. The array physical configuration and module serial numbers are given in Appendix B.

Figures 23 and 24. Hoxan Array

The source circuit junction box (Figure 25), manufactured by Photron Inc., is mounted under the array and contains the blocking diodes, fuses, surge protection equipment and disconnect switches. The output of the array is connected to the combiner box in the control room (Figure 26). This box contains a circuit breaker.

Figure 26. System 6 Combiner Box

Figure 25. System 6 Source Circuit Junction Box

The system uses a 5 kVA Abacus Inverter, Model 753-4-200, Serial #11233-01. It has a dc input range of 160-240 Vdc and an ac output of 240 Vac - 60 Hz - single phase. The inverter is connected to one phase of the three-phase grid. No ac junction box is used.

SYSTEM PERFORMANCE

In addition to the several performance measurements that were taken, each system was visually inspected and evaluated. The conditions noted for each system are described in the following subsections. (Also see Table 1 in the *Introduction* which shows the average peak power for each system.)

System 1 – Sovonics

The Sovonics system was not operating at the time of the test; the following conditions were identified.

- 1) The array seems to be undamaged, but the wiring from the source circuit junction box to the combiner box in the control room appears to have a ground fault.
- 2) Two fuses in the Omnion inverter are blown, the negative source circuit fuse and the ac output fuse. The condition of these fuses and the array wiring ground fault are most likely the cause of the inverter malfunction.
- 3) The source circuit junction boxes on the array are severely corroded on the outside, but the inside plates and the components mounted on the inside plate are still usable.
- 4) The array frames and mounting structure are currently ungrounded.
- 5) Several of the modules show signs of delamination (Table 2). (The groups are numbered east to west and the modules are number north to south.) The following table lists these modules, and a photograph of typical module delamination is shown in Figure 27.

Group 1 - Module 2	Group 11 - Module 3
Group 4 - Module 1	Group 11 - Module 4
Group 4 - Module 4	Group 15 - Module 1
Group 8 - Module 2	Group 20 - Module 4
Group 8 - Module 4	Group 21 - Module 3
Group 9 - Module 2	Group 24 - Module 3
Group 10 - Module 4	

Table 2. Modules Showing Signs of Delamination

Figure 27. Typical Sovonics Module Delamination

- 6) Five of the modules had moisture damage, Group 8 Module 2, Group 19 -Module 3, Group 26 - Module 3, Group 26 - Module 4, and Group 26 - Module 6.
- 7) One module, Group 10 Module 4, showed signs of corrosion.

Several IV curves of the array were taken during the test (Appendix A). The IV data were normalized to 1000 W/m^2 and 45° C. A temperature of 45° C was used to more closely represent the expected field performance.

Curve Name	Measured Peak Power (W)	Measured Irradiance (W/m ²)	Measured Cell Temp. (°C)	Normalized Peak Power (W)	
s1-iv02	1463.58	845.6	47	1747.1	
s1-iv04	987.55	562.5	46	1763.9	
s1-iv01	1454.67	836.8	47	1754.7	
Sovon					
	Peak Power				

 Table 3. System 1 (Sovonics) System Performance

Several IV curves of a single string were also taken during the test (Appendix A). The average normalized rating for a typical string was about 180 W at 1000 W/m² and 45°C.

System 2—Mobil

The Mobil system was functioning at the time of the test. The inverter output was about 2.3 kW under an irradiance of approximately 940 W/m². The following conditions were identified during the test.

- 1) The four array strings are configured in a single bipolar center-grounded array. The dc voltage measured with respect to ground is an indication of the array operating imbalance. The positive array was operating at +203Vdc and the negative array was operating at -239Vdc at the time of the testing. This represents an imbalance of 15% and is probably due to array/modules degradation.
- 2) The inverter efficiency was determined to be about 89% with a dc input of 2,500VAdc and an ac output of 2230VAac. This indicates that the inverter is operating at or above the

original specification.

- 3) The source circuit junction boxes on the array are severely corroded, but the inside plates and the components mounted on the inside plate are still usable and operating.
- 4) Two modules were identified with problems. Module 4 had corrosion of the front contacts (Figure 28) and Module 6, a slight delamination (Figure 29).

Figure 28. Mobil Array Module 4 Corrosion

Figure 29. Mobil Array Module Delamination

5) Several IV curves of the array were taken during the test (Appendix A). The IV data were normalized to 1000 W/m² and 45°C. A temperature of 45°C was used to closely represent the expected field performance.

Curve Name	Measured Peak Power (W)	Measured Irradiance (W/m ²)	Measured Cell Temp. (°C)	Normalized Peak Power (W)
s2-iv07	3050.89	938.0	55	3405.4
s2-iv09	3026.46	935.9	55	3385.7
s2-iv10	3039.4	936.8	55	3396.9
Mob				
Peak Power				3396 W

Table 4. System 2 (Mobil) System Performance

System 3 – Kyocera

The Kyocera system was also functioning at the time of the test. A visual walk-through was conducted and the modules and the array structure were found to be in good condition. The inverter was producing about 1.5 kW under an irradiance of about 940 W/m². The following conditions were identified during the test.

- 1) The array dc operating voltages were +198Vdc and -226Vdc, an imbalance of 13%.
- 2) The inverter efficiency was about 93% with a dc input of 1587 VAdc and an ac output of 1484 VAac.
- 3) The module frames are not grounded using a grounding conductor, but instead rely on the physical contact between the module frames and the "I" beams. The "I" beam frame is connected to earth in one location using a ground rod.
- 4) The summing junction boxes on the array are severely corroded on the outside, but the inside plates and the components mounted on the inside plate are still usable and operating.
- 5) The modules are all in good condition. Several IV curves of the array were taken during the test (Appendix A). The IV data were normalized to 1000 W/m² and 45°C. A temperature of 45°C was used to closely represent the expected field performance.

Curve Name	Measured Peak Power (W)	Measured Irradiance (W/m ²)	Measured Cell Temp. (°C)	Normalized Peak Power (W)
s3-iv07	2680.15	935.0	55	3001.2
s3-iv08	2701.41	941.2	55	3005.1
s3-iv09	2694.92	941.4	55	2997.2
s3-iv10	2707.44	941.2	55	3011.8
Kyocer				
System Peak Power				3004 W

Table 5. System 3 (Kyocera) System Performance

System 4 – Kyocera

The second Kyocera system was also functioning at the time of the test, and the array was in good condition. The inverter was producing about 1.1 kW under an irradiance of about 927 W/m^2 . The following conditions were identified during the test.

- 1) The array dc voltages during normal operation were +205 Vdc versus -222 Vdc, an imbalance of 8%.
- 2) The inverter efficiency was about 86% with a dc input of 1065 VAdc and an ac output of 918 VAac.
- 3) The module frames are not grounded using a grounding conductor, but instead rely on the physical contact between the module frames and the "I" beams. The "I" beam frame was connected to earth in one location with a ground rod, but the bare conductor has been cut.
- 4) The source circuit junction boxes on the array are severely corroded on the outside, but the inside plates and the components mounted on the inside plate are still usable and operating.
- 5) The modules are all in good condition. Several IV curves of the array were taken during the test (Appendix A). The IV data were normalized to 1000 W/m² and 45°C. A temperature of 45°C was used to closely represent the expected field performance.

Curve Name	Measured Peak Power (W)	Measured Irradiance (W/m ²)	Measured Cell Temp. (°C)	Normalized Peak Power (W)
s4-iv07	2724.56	933.2	55	3056.8
s4-iv08	2710.49	931.5	55	3046.6
s4-iv09	2704.17	932.0	55	3037.8
s4-iv10	2713.82	932.9	55	3045.7
Kyocera	3047 W			

Table 6. System 4 (Kyocera) System Performance

System 5 – ARCO

This system has not been completely installed. The following conditions were identified during the test.

- 1) The array mounting structure and ground are in good condition.
- 2) The source circuit junction box and tracking equipment are also in good condition.
- 3) The system is currently not configured for active tracking. The axis of rotation is north-south, but presently the array is in a fixed horizontal position.
- 4) All of the modules exhibit EVA browning (Figure 30). This browning covers about 90% of each cell, with a picture frame area around the edge of each cell with less discoloration.
- 5) Two modules have cracked cells, Group 2 Module 6 and Group 8 Module 3.
- 6) One module has severe browning and corrosion and needs to be replaced, Group 10 Module 7.

Figure 30. ARCO Array Typical EVA Discoloration

7) Several IV curves of the array were taken during the test (Appendix A). The IV data were normalized to 1000 W/m^2 and 45°C . A temperature of 45°C was used to closely represent the expected field performance.

Curve Name	Measured Peak Power (W)	Measured Irradiance (W/m ²)	Measured Cell Temp. (°C)	Normalized Peak Power (W)
s6-iv01	5590.78	989.1	56	5944.6
s6-iv03	5330.46	936.7	55	5958.1
s6-iv04	5489.59	966.0	55	5949.9
s6-iv06	5543.23	982.1	56	5936.1
ARC	5947 W			

 Table 7. System 5 (ARCO) System Performance

System 6 – Hoxan

This system was not operating during the test, but the following conditions were identified.

- 1) The Abacus inverter was "ON," and the array voltage was present on the inputs but no output was observed. The inside of the inverter appeared undamaged.
- 2) The Unistrut module rack is severely rusted and in some places has lost structural integrity.
- 3) The source circuit junction box showed moderate signs of corrosion on the outside, but the inside plates and the components mounted on the inside plate are still usable and operating.
- 4) The array was basically in good condition with the exception of five modules. Group 6 -Module 2 showed signs of water damage in the lower right corner. Four modules had areas with corrosion: Group 1-Module 7, Group 2-Module 5, Group 6-Module 2, and Group 12-Module 2.
- 5) Several IV curves of the array were taken during the test (Appendix A). The IV data were normalized to 1000 W/m^2 and 45°C . A temperature of 45°C was used to closely represent the expected field performance.

Curve Name	Measured Peak Power (W)	Measured Irradiance (W/m ²)	Measured Cell Temp. (°C)	Normalized Peak Power (W)
s5-iv07	3936.25	934.5	55	4410.1
s5-iv08	3926.93	934.2	55	4401.1
s5-iv10	3923.54	936.5	55	4386.5
Ноха	4399 W			

Table 8. System 6 (Hoxan) System Performance

Control Room

The control room was in good condition (Figure 31). The ventilation fans were not operational at the time of the test, but the equipment appeared to be undamaged. The northwest side of the control room contained a DAS.

Figure 31. Control Room

A weather station (Figure 32), mounted on the control room, contains instruments for measuring wind speed, wind direction, ambient temperature, horizontal irradiance and irradiance on a tilted surface. These sensors will be removed by FPL and sent to FSEC for inspection and calibration.

Figure 32. Data Acquisition System

RECOMMENDATIONS

The following repairs are recommended to provide a fully functional system. The repairs and suggestions are grouped into a general category applicable to the array field and into categories for each of the individual arrays.

General Conditions

- Replace all exterior junction boxes that have been corroded to prevent damage to the electrical components. Plastic or fiberglass enclosures are recommended for corrosion resistance.
- Bond all module frames and properly ground the array support structures to ensure safety for workers and to protect the equipment. Each module frame and the array support structures should be connected to a bare bonding conductor and then connected to earth ground. It is permissible to use multiple ground rods (for bonding).
- Remove several modules from each array for a comprehensive performance evaluation by Sandia National Laboratories. Tests will be conducted that will help determine the degradation mechanisms. This information will assist in the calculation of the array output that can be expected in the future.
- Overhaul the DAS by having the malfunctioning equipment repaired, calibrated, or replaced. It is important that data from the array be collected and analyzed to provide an accurate description of the systems' performance as a generation facility. A cellular phone should be installed for reliable data collection communications.
- Provide operation and maintenance (O&M) logs for each system. Update the logs any time repairs are required. Include a diagnosis of the problem and documentation of the maintenance procedures conducted.
- Conduct general maintenance inspections at least once per quarter to ensure proper function and for preventative maintenance scheduling.
- Initiate and maintain a monthly meter reading schedule to track performance.

System 1 – Sovonics

- Replace the conductors from the source circuit junction box to the combiner box in the control room. Identify the cause of the apparent ground fault in the existing conductors to prevent future occurrences.
- Replace the blown fuses in the Omnion inverter. Inspect the inverter for damage to the electronics or send the unit to the manufacturer for inspection. The inverter may need to be repaired, upgraded, or replaced, depending on the present condition.
- Test the degraded modules during the quarterly maintenance inspections to determine the effects of any electrical output changes on the output of the PV array. Take functioning modules from a single string to replace any malfunctioning modules.
- Replace the corroded source circuit junction boxes.
- Install proper bonding and grounding for the modules and array support structure.

System 2 – Mobil

- Replace the corroded source circuit junction boxes.
- Install proper bonding and grounding for the modules and array support structure.

• Test Module 6 (slight delamination was observed) and Module 4 (front contacts are corroded) during the quarterly maintenance inspections for output levels, and replace if necessary.

System 3 – Kyocera

- Replace the corroded array summing junction boxes.
- Install proper bonding and grounding for the modules and array support structure.

System 4 – Kyocera

- Replace the corroded array summing junction boxes.
- Install proper bonding and grounding for the modules and array support structure.

System 5 – ARCO

- Complete the installation of the system.
- A newer model inverter should be installed. The DECC inverter should be removed from the site and placed in a technological museum.
- Replace Module 7 Group 10, which exhibits severe browning.
- Test and evaluate the modules with cracked cells and replace if necessary.
- Allow the modules to remain in a horizontal position and properly install bracing and tie downs. In a horizontal orientation, the system will have a higher output in the summer than in the winter in comparison with orienting the array tilted to the south. The horizontal position will also be more aesthetic as the browning of the modules will be less visible.
- Document the extent of the browning during quarterly maintenance inspections to identify any changes in the condition.

System 6 – Hoxan

Option 1

- Replace the severely corroded array support structure with a corrosion resistant structure.
- Orient the array facing south at an angle of 24 degrees from horizontal on the new mounting structure.
- Replace or repair the Abacus inverter.
- Install an ac disconnection switch at or near the inverter, or mount a sign clearly stating how to isolate the inverter.
- Test and evaluate the modules showing signs of corrosion or water damage and replace malfunctioning modules.

Option 2

- Disassemble the system and salvage the functioning modules, electronics, and BOS.
- Reuse the suitable components in other installation projects or displays.

APPENDIX A ARRAY IV CURVES

APPENDIX B

ARRAY CONFIGURATIONS and MODULE SERIAL NUMBERS

ARRAY 1 (SOVONICS) showing module serial numbers

005797	005939	005957	988500	005887	005940
005825	005863	005860	005948	005786	005789
005795	005892	005885	005894	005898	005884
005744	005763	005804	005808	005732	005730
005841	005868	005869	005876	005879	005822
005782	005846	005838	005834	005917	005734
005906	005801	005899	005904	005901	005900
005937	005936	005929	005809	005787	005798
005837	005893	005880	005943	005941	005935
005824	005877	005766	005855	005831	005775
005796	005729	005731	005812	005728	005779
005816	005820	005915	005918	005923	005919
005755	005811	005742	005750	005749	005747
005949	005942	005881	005882	005883	005727
005958	005907	005908	005875	005874	005873
005848	005780	005819	005910	005925	005928
005854	005736	005853	005821	005843	005922
005818	005753	005794	005829	005757	005754
005953	005911	005926	005924	005912	005950
005856	005849	005748	005752	005916	005952
005785	005769	005761	005771	908500	005896
005931	005930	005891	005803	005807	005746
005799	005792	005791	858500	005793	005865
005772	005867	005823	005862	005861	005859
005783	005740	005773	005776	005871	005845
005909	005897	005805	005802	005765	005794
005768	005741	005756	005758	005944	005733
005852	005815	005813	005961	926500	005955
007126	005115	00511?	005154	005120	005114
005828	005833	005832	005839	005751	005743

Tilt angle: 24° Output: Unknown Model: P-201 Date: Unknown Type: Amorphous Silicon

ARRAY 2 (MOBIL) showing module serial numbers

12921
9556
12582
12743
12847
12738
12748
12735
12856
12852
12733
12736
12579
12578
12890
12745
12894
12912
12747
12740

Tilt angle: 24° Output: Unknown Model: Ra180-36E Date: 11/27/89 Type: Polycrystalline

ARRAY 3 (KYOCERA) showing module serial numbers

90X14002	90X14077
90X14001	90X14022
90X14080	90X14021
90X14079	90X14038
90X14014	90X14037
90X14013	90X14020
90X14072	90X14071
90X14054	90X14076
90X14053	90X14075
90X14048	90X14078
90X14047	90X14032
90X14012	90X14031
90X14011	90X14030
90X14024	90X14029
90X14064	90X14023
90X14063	90X14018
90X14060	90X14017
90X14057	90X14082
90X14056	90X14081
90X14059	90X14060
90X14058	90X14059

Tilt angle: 23° Output: 93.6 W/Module 66 Cells/ Module Voc: 31.0 V Isc: 3.02 A Dimensions: 1195x655x36 mm Model: LA661K94 Date: October 1990 Type: Polycrystalline

ARRAY 4 (KYOCERA) showing module serial numbers

90X14052	90X14040
90X14051	90X14042
90X14057	90X14041
90X14045	90X14028
90X14026	90X14027
90X14067	90X14009
90X14016	90X14006
90X14036	90X14005
90X14050	90X14025
90X14074	90X14033
90X14004	90X14049
90X14035	90X14066
90X14044	90X14065
90X14043	90X14015
90X14062	90X14068
90X14061	90X14046
90X14007	90X14058
90X14008	90X14055
90X14039	90X14056
90X14070	90X14084
90X14069	90X14083

Tilt angle: 23° Output: 93.6 W/Module 66 Cells/ Module Voc: 31.0 V Isc: 3.02 A Dimensions: 1195x655x36 mm Model: LA661K94 Date: October 1990 Type: Polycrystalline

ARRAY 5 (ARCO) showing module serial numbers

WEST HALF

*	10005	10005	10005	10007	10002	10007	10005	10001	10001	10001	10004	10019	10003	10018	10022
*	10024	10015	10007	10026	10002	10014	10005	10001	10002	10000	10002	10027	10004	10006	10016
*	10014	10024	10024	10007	10002	10014	10006	10000	10002	10004	10002	10021	10012	10014	10020
*	10021	10024	10021	10005	10005	10005	10004	10000	10002	10004	10003	10005	10012	10008	10026
*	10023	10021	10021	10007	10000	10000	10006	10008	10008	10001	10002	10008	10007	10010	10015
*	10024	10024	10023	10002	10006	10000	10004	10003	10001	10003	10008	10006	10007	10016	10011
*	10024	10024	10014	10006	10014	10000	10004	10003	10000	10003	10004	10006	10008	10010	10006
*	10007	10015	10024	10007	10004	10014	10004	10001	10000	10003	10003	10006	10008	10015	10008
	*Serial number unknown														

EAST HALF

100227	10022	10027	10018	10729	10572	10906	10905	10017	10022	10020	10017	10017	10009	10010	10008
100252	10023	10023	10025	10721	10580	10591	10906	10017	10023	10020	10015	10017	10011	10012	10009
100220	10022	10022	10022	10700	10716	10579	10901	10017	10023	10020	10015	10009	10011	10012	10010
100275	10027	10027	10025	10012	10010	10018	10019	10018	10015	10020	10018	10009	10002	10011	10010
100136	10013	10013	10013	10021	10016	10019	10018	10025	10020	10016	10020	10011	10010	10011	10009
100257	10025	10017	10017	10013	10012	10019	10018	10025	10015	10016	10020	10009	10010	10011	10009
100233	10023	10025	10024	10012	10012	10019	10018	10025	10020	10016	10019	10017	10009	10011	10009
100228	10022	10027	10027	10013	10012	100?	10018	10025	10015	10016	10019	10017	10008	10011	10009

Tilt angle: 0° 36 Cells/Module Output: Unknown Model: M52-S Date: 05/83 Type: Single Crystal

ARRAY 6 (HOXAN) showing module serial numbers

34161	34946	34949	34288	34196	34931	34173	33958	34170	33938	33972	34305	33961	33971	33939	33991
34283	34157	34280	34156	34134	34303	34226	34293	34282	34292	33973	34034	33993	34168	33934	33926
34033	34290	34285	34172	34300	34032	34199	34171	33948	33953	34294	33954	34297	34304	33945	34164
34967	34965	34301	34195	34289	34952	33925	33990	33963	33959	33928	33927	33929	34286	34132	33936
34198	34163	34951	34302	34295	34174	33957	33974	33956	34130	33964	33966	33962	33968	33933	34133
34158	34299	34169	34166	34167	34155	34228	34162	33932	33992	33930	34287	33947	34159	34165	33937
34031	34197	34131	34296	34298	34160	34307	33960	33955	34284	33969	33970	34281	34030	33950	34227

Tilt angle: 25° 36 Cells/Module (4x9) Output: Unknown Model: H-4810 Date: Unknown Type: Single Crystal