Into the Storm

The Twin Challenges of Peak Oil & Global Warming

Philip Fairey
Into the Storm
Any Questions?

- Who is captain of the ship?
- If it were you, what would you want to know?
 - How bad is the storm?
 - How fast are we closing on the storm?
 - How strong is the ship?
 - How large is the ship and . . .
 - How quickly can she be turned?
 - What is Plan B?
What is “Peak Oil”?

The point at which we reach maximum global oil production

- **Peak Oil IS NOT:**
 - The end of oil
 - An energy crisis

- **Peak Oil IS:**
 - A liquid fuel crisis
 - A potential economic, political and social crisis
Peak Oil Facts

- All oil fields peak
- All oil regions peak
- World oil production will peak (or already has and we just haven’t been told)
- The really big fields get discovered early in the game – remember “low hanging fruit”
- Depletion is a fact of life in the oil business
- We cannot make more oil!
North Sea “Forties”

A “Giant” Oil Field (>10 billion bbl)

Peak (1979)

“Brent light sweet crude”
<table>
<thead>
<tr>
<th>Forecast</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-2007</td>
<td>Bakhtiari (Iran)</td>
</tr>
<tr>
<td>2007-2009</td>
<td>Simmons (U.S.)</td>
</tr>
<tr>
<td>After 2007</td>
<td>Skrebowski (U.K.)</td>
</tr>
<tr>
<td>2008</td>
<td>Campbell (Ireland)</td>
</tr>
<tr>
<td>Before 2009</td>
<td>Deffeyes (U.S.)</td>
</tr>
<tr>
<td>Before 2010</td>
<td>Goodstein (U.S.)</td>
</tr>
<tr>
<td>After 2010</td>
<td>World Energy Council</td>
</tr>
<tr>
<td>2012</td>
<td>Weng (China)</td>
</tr>
<tr>
<td>2016</td>
<td>Doug-Westwood (U.K.)</td>
</tr>
<tr>
<td>After 2020</td>
<td>CERA (U.S.)</td>
</tr>
<tr>
<td>2031 or later</td>
<td>EIA (U.S.)</td>
</tr>
</tbody>
</table>

- **< 5 years**
 - After 2007
 - Before 2009

- **5-10 years**
 - Before 2010
 - After 2010

- **> 15 years**
 - 2031 or later
The Underlying Facts

- We are consuming 3-4 barrels of oil for each barrel that is being discovered.
- World oil discovery peaked in 1964.
- World oil production is declining while world oil demand is rising.
- China and India (over half the world’s population) are very rapidly expanding their economies and their transportation fuel use (~8% growth per year)!
World Oil Demand

By Region

- MBD
- 140
- North America
- Europe
- Japan/Aus/NZ
- ME/AF
- Emerging Asia
- Russia/Caspian
- LA
- North America

By Sector

- MBD
- 140
- Power
- Transportation
- Industrial
- Res/Comm

The "China" Factor
Oil and gas now dominate our lives
40% of all traded energy is oil
More than 90% of all transportation fuel is oil
 Trade depends on transport
 Fuels much electricity generation
Critical for agriculture
 Fuels the tractor, transports the produce
 Basis for synthetic fertilizer and pesticides
Oil Production and Use

- 2005 world oil use = 84 million barrels per day (Mbpd)
- Over 75% of world’s production comes from fields that are 25 years old and in decline
- Experts believe world production will decline between 2% and 8% over the next 5 years
- World demand is predicted to increase by 2% per year over the same period, and . . .
- World oil production may have already peaked!
What Every beer drinker knows: The faster you drink it . . . !
The “Super Straw” Effect

- We are getting much better at extracting oil
 - Better geology – we know where it is
 - Better production technology – we know how to get it out quicker

- The problem – the speed of production does not improve our ability to ultimately produce more oil and may, in fact, reduce total oil recoverability!

- According to recent publications, this may have happened in Saudi Arabian fields.
Scary Fact of the Day

Actual 2005 (84 Mbpd)

Where The Oil Is

[Bar chart showing oil distribution in different regions: ME.Other East, W. Europe, Africa, L. America, N. America, Eurasia, ME Gulf. Categories include Produced, Reserves, Yet-to-Find.]
Saudi Oil

- One “super giant” field (Ghawar) contains 50% of all Saudi oil
- 4 other super giant oilfields make up an additional 40%
- And 3 others are another 8%
- All fields are between 40 and 60 years old
- All are reaching point of decline
- Half of “proven reserves” are questionable
- Remaining oil is increasingly difficult to produce.
Saudi Importance

- Can produce about 10-12 Mbpd or about 12% of current world oil demand
- Has more than 22% of reported “proven” reserves worldwide
- Will become the sole arbiter of price when remainder of world oil peaks – this is coming soon, if not here already
- Using advanced injection techniques and horizontal “fishbone” drilling technology to the hilt – no secondary oil recovery likely
Questions for the Saudis

- Why did the Saudi Arabian government stop reporting field-by-field production in 1982?
- Is there sufficient reason to believe that the Saudis really have 260 billion barrels of "proven" reserves, as they claim?
- What discoveries followed Aramco’s take over by the Saudi government that allowed proven reserves to be revised up from 170 billion barrels in 1989 to 260 billion barrels in 1990?
- Why no independent verification?
- Why are the detailed data a State secret!
Reported 1990 oil reserves are 178% of 1985 reserves!

Based on what? OPEC oil discovery peaked in 1970’s

Are they competing for OPEC Quota?

How can we accept these “proven” reserve reports as reliable?
Illusion versus Reality

Cumulative Discovery (Gb)

Year

Inflexion due to falling Discovery

Actual

As Reported

Reality

Illusion
The “Creaming Curve”

Getting the low hanging fruit first
What Happened?

- Oil companies reported reserves to meet strict Stock Exchange rules
 - Designed to prevent fraudulent exaggeration
 - Smiled on conservative reporting
- Discovery under-reported, revised upwards later
 - Comforting but misleading – false image of steady growth in discovery
 - No conspiracy - just simple commercial prudence
- OPEC over-reported reserves
 - To reassure U.S. and world consumers?
 - To achieve OPEC quota advantages?
New Oil...?

Drilling Our Way Out?

Net Barrels of Oil

Drilling more does not help
Original Oil in Place (OOIP)

50% recovery or 30% recovery?

Figure 1. Different Interpretations of a Hypothetical 6,000 Billion Barrel World Original Oil-in-Place Resource Base

Source: Energy Information Administration
Figure 2. Annual Production Scenarios with 2 Percent Growth Rates and Different Resource Levels (Decline R/P=10)

USGS Estimates of Ultimate Recovery

<table>
<thead>
<tr>
<th>Probability</th>
<th>Ultimate Recovery BBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (95%)</td>
<td>2,240</td>
</tr>
<tr>
<td>Mean (expected value)</td>
<td>3,003</td>
</tr>
<tr>
<td>High (5%)</td>
<td>3,800</td>
</tr>
</tbody>
</table>

Campbell Update

OIL AND GAS LIQUIDS
2004 Scenario

Source: Campbell, C. J. http://www.hubbertpeak.com/campbell/
Who to Believe?

“Low hanging Fruit” Trend

Source: Campbell, C.J. and J. Gilbert, “What We Know and What We Think We Know.” Presentation, ASPO Conference, Denver, CO, November, 2005
Macro Economics

- Demand is generally inelastic – small changes in supply yield large changes in price
- **Immediate alternatives** don’t exist
- **Make it personal** – what would you be willing to pay:
 - If your spouse or child was deathly ill and you needed to get them to a hospital?
 - To maintain employment and provide for your family?
- “Demand **destruction**” (outlandish prices, rationing, etc) could become the catch phrase
Supply and Demand: As simple as 1, 2, 3.

1. Production
 (Supply Declines)

2. Demand
 (Healthy World Economy)

3. Price
 (Sky Rockets)

How much are you willing to pay?

A Significant Liquid Fuel Problem
“Flat Earth” Economics

- The “invisible hand” of the free marketplace will always meet demand

- But . . .
 - At what price and who will be able to pay?
 - The marketplace cannot make more oil?
 - The “sunk” capital costs (stranded assets) are huge, the lead time for mitigation is extensive, and there is no “Plan B” on the table!
 - What happens if Adam Smith is wrong?
Economics of Dependence

Cost of Dependence

Costs of Oil Dependence to the U.S. Economy
2005 Oil Price of $45.50/bbl

What Americans Can Do

“... half to two thirds (of the economic gains) resulted from greater energy efficiency. Technological improvements in energy efficiency allow consumers to enjoy more energy services without commensurate increases in energy demand.”

Infrastructure Problem

U.S. Fleet Characteristics

<table>
<thead>
<tr>
<th>Fleet</th>
<th>Size</th>
<th>Median Life (years)</th>
<th>Cost to replace half the fleet (2003 $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobiles</td>
<td>130 million</td>
<td>17</td>
<td>$1.3 trillion</td>
</tr>
<tr>
<td>Light trucks, SUVs, etc.</td>
<td>80 million</td>
<td>16</td>
<td>$1 trillion</td>
</tr>
<tr>
<td>Heavy trucks, buses</td>
<td>7 million</td>
<td>28</td>
<td>$1.5 trillion</td>
</tr>
<tr>
<td>Aircraft</td>
<td>8,500</td>
<td>22</td>
<td>$0.25 trillion</td>
</tr>
</tbody>
</table>

Mitigation Scenarios

- Scenario I – No action until peaking occurs
- Scenario II – Mitigation started 10 years before peaking
- Scenario III – Mitigation started 20 years before peaking

Optimistic limiting case

All mitigation initiated immediately
Crash program implementation

Mitigate 20 Years Prior

PRODUCTION (Mbpd)

YEARS BEFORE / AFTER OIL PEAK

Mitigation

Start

Oil Peaking Further Delayed

Mitigate 10 Years Prior

Mitigate At Peak

Given human nature, this may be the most likely scenario!

Conclusions

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait for peaking</td>
<td>Oil shortage largest and longest lasting</td>
</tr>
<tr>
<td>Start 10 years early</td>
<td>Delays peaking, still shortages</td>
</tr>
<tr>
<td>Start 20 years early</td>
<td>Avoids problem, smooth transition</td>
</tr>
</tbody>
</table>

No Quick Fixes – Start Now

But Not To Worry . . .

- The world is blessed by much coal
- At the current U.S. demand for energy, we have 250 years worth left in coal – just dig!
 - Do as the Germans had to in WWII – make transportation fuels from coal
 - Convert electric generation plants from oil and natural gas to coal and nuclear (but coal is already 50% of U.S. electric generation?)
- And this brings us to . . .
Global warming is scientifically accepted fact
Per unit energy, coal produces 50% more atmospheric CO₂ than oil and 110% more than natural gas
Global warming is deadly
- In France alone, more than 14,000 excess deaths resulted from the 2003 European heat wave¹
- 80% of global population lives in close proximity to the sea – major populations are threatened
Major climatic catastrophe could take down the global insurance industry at $2 trillion per year

Watching Their Losses

Worldwide Economic Losses Due To Great Weather Disasters
1960-1998

© Munich Re, 1999
It’s Personal!

Hurricane Floyd; 09/13/99 – Category 5!
1827: Fourier, a French mathematician, coined the term “greenhouse effect” as causation for the differences in day and night temperatures.

1860: Tyndall, a British scientist, first measured absorption of light spectra by CO₂ and water vapor and attributed ice ages to changes in atmospheric gas concentration.

1896: Arrhenius, a Swedish chemist, made first quantitative attempt to estimate the effect of atmospheric CO₂ on global temperatures.

1938: Callender, a British meteorologist, was first to claim evidence of “global warming.”
New? Well, Not Exactly

- **1958:** Charles Keeling, an American scientist, began keeping CO₂ records on the peak of Mauna Loa in Hawaii (more on this later)
- **1988:** James Hansen, a leading NASA Scientist, told U.S. Senate committee he was “99% certain” that global warming was occurring and that is linked to fossil fuel burning
- **1990:** First IPCC report concludes there is a causal relationship between human activities and global warming.

The sensitivity of these measurements is corroborated by the fact that peaks and valleys correspond to winter and summer in the northern hemisphere.
Model vs. Observation

Simulated global warming 1860-2000: natural & Man-made factors

Keeling CO₂ Data Set
The average surface temperature will rise between 1.4°C (2.5°F) and **5.8°C (10°F)** by 2100.

"We must move ahead boldly with clean energy technologies and we should start preparing ourselves for the rising sea levels, changing rain patterns and other impacts of global warming."

The Past 1000 Years!

Data from 2000 IPCC

Millennial Northern Hemisphere temperature reconstruction (blue) and instrumental data (red) from AD 1000 to 1999, adapted from Mann et al. (1999). Smoother version of Northern Hemisphere series (black), linear trend from AD 1000 to 1850 (purple dashed) and two standard error limits (grey shaded) are shown.
What’s a Degree or So?

“The typical temperature difference for the whole world between an ice age and an interglacial interval is only 3° to 6° C. This should set the alarm bells ringing: A temperature change of only a few degrees can be serious business.”

Carl Sagan,
400,000+ Years of Data!

- **Eons of data** – well correlated to global temperature change
- What will it take to tip the balance?
 - 550 ppm – very scary
 - +2 °C – equally scary
- **Amplification** is entirely possible
- What happens when the “ocean conveyor” stops?
“Big Bang” Theory

It is at least possible, because the earth has never experienced greenhouse gas and temperature regimes like this, that we may exceed some stable state threshold and “jump” to a completely new and very different state. This would only make matters worse, probably much worse.

One thing we know for certain – we have entered new and uncharted waters!
Quiz Answers:

Q. Who is Captain of this ship?
A. There is no captain – and worse yet, the crew is misinformed about the dangers of the storm.

Q. How bad is the storm?
A. Answer is uncertain – much of the Peak Oil data are highly questionable.

Q. How fast are we closing on the storm?
A. Closing speed is contentious – often argued using sophisticated disinformation campaigns.
Quiz Answers:

Q. How strong is the ship?
A. She may not be strong enough – economic and political systems may not be up to this task.

Q. How large is the ship and how quickly can she be turned?
A. She is extremely large and it will take literally decades to bring her about.

Q. What is Plan B?
A. There is no Plan B!
Grand Challenges

- Where great challenges are understood, humanity has proven very adaptable and innovative but there remains . . .
 - **Great Need** for better and more reliable data
 - **Urgent Need** for frank and factual public discourse

- **But . . . It’s Political Suicide** –
 - So who will step up to the plate?
 - Probably no one until too late in the game!

- Thus, you are Plan B!