Student Objective

The student:

- will be able to identify major events and developments in the history of solar energy
- will work cooperatively to create a poster or computer generated presentation that communicates information.

Materials:

- Internet and book resources
- Internet and computer presentation materials
- time line information

Key Words:

passive solar photovoltaic solar collector solar furnace solar still time line

Time:

- 1 2 class periods for research and development
- 1 2 class periods for presentations and discussion

Procedure

- 1. Divide the class into nine (9) groups of students; the number of students in each group should be as even as possible.
- 2. **Engage:** Explain to the class that they will be working in small groups for the purpose of researching and creating a class presentation for a particular 'theme' representing the historical development of solar energy and then presenting this information to their peers.
- 3. Assign one of the nine themes to each group; or let students select one for their group so that each group has one of the nine different themes. The nine groups are:
 - Early development and use of solar energy from 600 B.C.E. 1700s
 - Historical development of passive solar architecture
 - Historical use of passive solar architecture
 - Historical development of solar thermal
 - Historical use of solar thermal
 - Historical development of photovoltaics
 - Historical use of photovoltaics
 - Solar Energy Scientists select major contributing scientists, include both achievement and personal information
 - Future research and development in the field of solar energy
- 4. **Explore:** All students will research their subject area using John Perlin's links at the California Solar Center. Upon completion of this research, students will then review the Department of Energy's Time Line using it to select pertinent information needed for their contributing theme to the History of Solar Energy. Students should then seek a third

resource for adding information and developing a presentation to the class.

- 5. Students should have access to computers and various books for resource material. Computer presentation programs should be utilized for developing the presentations. However, if this is not possible, a poster board presentation may be prepared. The group members should be assigned (or volunteer for) a significant and equal role in this project researching and presenting material.
- 6. Discuss and display the rubric so students know your expectations. Use the rubric to score group presentations.
- 7. Assist the groups as necessary while they are working on their presentations.
- 8. **Explain and Elaborate:** Each group is to write a haiku poetic conclusion to summarize their information and to integrate science and the art of literature. (A haiku follows a 5-7-5 syllable pattern and should reflect a sensory image, in this case summarizing the beauty and importance of their segment of solar energy and history.)
- 9. Have each group present their portion of solar energy history to the class in an appropriate sequential order.
- 10. Finalize this activity by having students develop a plan to implement solar energy as a non-polluting, greener solution to our future energy needs, defending their ideas with historical use and development knowledge. Individual or group plans will be presented as a proposal for a policy during the class discussion (or debate). Students should defend their ideas as a policy proposal to you, the 'governing board'.

Evaluation and Student Assessment

Assign point values to suit your needs:

Solar History Presentation Rubric											
Criteria	Exemplary exceeds expectations	Above Average most skills mastered	Average approaching expectations with a few errors	Novice developing expectations - needs improvement							
Main theme - clear, identified title and group introduction											
Main ideas - purposeful and support the theme											
Information - sequential, logical, accurate, and interesting											
Visuals - clearly exhibited and connected to the theme											
Voice and body language - shows enthusiasm and interest											

Haiku - supports theme, is reflective and conveys emotion		
Organization - coordinated and thoughtful		
Overall - Group was prepared and full participation is evident		

Class Discussion Rubric										
Criteria	8 Excellent	7 High Quality	6 Acceptable	0 Not Done						
Presents valid and reliable point of view										
Includes strategies										
Includes barriers										
Respects the opposing ideas of others										
Supports the similar ideas of others										

Suggested Overall Assessment:

40% group presentation rubric score

20% observation of students participating in the group

40% class discussion based on student participation. Students need to present and defend their ideas and plans for future implementation.

Related Research:

- 1. Have the students produce skits about their time period.
- 2. Prepare a presentation to give to parents, a partner class or the school in general for Earth Day on the history and current applications of solar energy.
- 3. Research writing a policy and propose a new policy to implement solar technology in a place of your choice.
- 4. Have students write letters to the newspaper's editor, political leaders, school board, or others in support of using more solar technology as a source of energy in schools.

5. Develop a homeowners guide to use more solar technology as a source of energy in the home.

Related Reading

- A Golden Thread: 2500 Years of Solar Architecture and Technology by Ken Butti & John Perlin (Cheshire Books, 1980)
 A Golden Thread provides a historical perspective of the influence of solar energy on society throughout the ages. The book provides information relating to the scientific, societal and economic influences contributing to the development of solar technology, as well as explanations of how the various forms of solar technology function.
- *From Space to Earth: The Story of Solar Electricity* by John Perlin (Aatec Publications, 1999)

John Perlin surveys the fascinating evolution of photovoltaics from its problematic and controversial nineteenth century beginnings to its indispensable and versatile role as a power source for contemporary daily life. More than the story of a technology, From Space To Earth is also a chronicle of the individuals who persevered, took chances, bucked authority, innovated, invented, and crusaded to provide humanity with renewable energy.

The Return of the Solar Cat by Jim Augustyn (Patty Paw Press, 2003) "A cat sunning itself in the doorway of a barn knows all about solar energy. Why can't man learn?" (E.B.White). The Return of the Solar Cat book decisively answers this question. Jim Augustyne takes the Suessian approach to showing the reader our myopia when it comes to the nature of renewable energy, politics, and economics through the fun-house mirror of technologically advanced felines and their 'natural' instincts and behavior which are optimized for solar utilization. Augustyne has developed an alternate universe of whimsy and pointy satire where kitties rule and our human foibles and blindness to the advantages of solar energy are entertainingly exposed.

Internet Sites:

http://www.californiasolarcenter.org/history.html

California Solar Center and John Perlin summarize the history of photovoltaics, solar thermal and passive solar

http://inventors.about.com/library/inventors/blsolar2.htm

Time line of photovoltaics listing major inventors and scientists

http://www.energy.gov/about/timeline.htm

Department of Energy's Energy Timeline

http://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf

Department of Energy, Energy Efficiency and Renewable Energy website. Solar Energy timeline used in this lesson

		1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0
Nature of Scie	ence																				
Standard 4	SC.912.N.4		X																		
Earth and Spa	ace																				
Standard 6	SC.912.E.6.						X														
Life Science																					
Standard 17	SC.912.L.17.											X		X			X	X		X	X
Language Arts Standards LA.910.2.2.1, LA.910.2.2.2, LA.910.2.2.5, LA.910.3.5.1, LA.910.3.5.3, LA.910.5.2.4, LA.910.5.2.5, LA.910.6.3.3, LA.910.6.4.1, LA.910.6.4.2, LA.1112.2.2.1, LA.1112.2.2.2, LA.1112.2.2.5, LA.1112.3.5.1, LA.1112.2.5.3, LA.1112.5.2.4, LA.1112.5.2.5, LA.1112.6.3.3, LA.1112.6.4.1, LA.1112.6.4.2																					

Science Standards

Standard 4: Science and Society

• SC.912.N.4.2 - Weigh the merits of alternative strategies for solving a specific societal problem by comparing a number of different costs and benefits, such as human, economic, and environmental.

Standard 6: Earth Structures

• SC.912.E 6.6 - Analyze past, present, and potential future consequences to the environment resulting from various energy production technologies.

Standard 17: Interdependence

- SC.912.L.17.11 Evaluate the costs and benefits of renewable and nonrenewable resources, such as water, energy, fossil fuels, wildlife, and forests.
- SC.912.L.17.13 Discuss the need for adequate monitoring of environmental parameters when making policy decisions.
- SC.912.L.17.16 Discuss the large-scale environmental impacts resulting from human activity, including waste spills, oil spills, runoff, greenhouse gases, ozone depletion, and surface and groundwater pollution.
- SC.912.L.17.17 Assess the effectiveness of innovative methods of protecting the environment.
- SC.912.L.17.19 Describe how different natural resources are produced and how their rates of use and renewal limit availability.
- SC.912.L.17.20 Predict the impact of individuals on environmental systems and

examine how human lifestyles affect sustainability.

Language Arts Standards

Literary Analysis - Standard 2: Nonfiction

- LA.910.2.2.1 and LA.1112.2.2.1 The student will analyze and evaluate information from text features (e.g. transitional devices, table of contents, glossary, index, bold or italicized text, headings, charts and graphs, illustrations, subheadings)
- LA.910.2.2.2 and LA.1112.2.2.2 The student will use information from the text to answer questions or to state the main idea or provide relevant details.
- LA910.2.2.5 and LA1112.2.2.5 The student will select a variety of age and ability appropriate nonfiction materials (e.g. biographies and topical areas, such as science, music, art, history, sports, currents) to expand the core knowledge necessary to connect topics and function as a fully literate member of a shared culture.

Writing Process - Standard 5: Publishing

- LA.910.3.5.1 and LA.1112.3.5.1 The student will prepare writing using technology in a format appropriate to the purpose.
- LA.910.3.5.3 and LA.1112.3.5.3 The student will share with others or submit for publication.

Communication - Standard 2: Listening and Speaking

- LA.910.5.2.4 The student will use an engaging introduction and conclusion and the use of figurative language to reinforce the intended message.
- LA.910.5.2.5 and LA.1112.5.2.5 The student will research and organize the information that integrates appropriate media into presentations for oral communication (e.g. digital presentation, charts, photos, primary sources, websites)
- LA.1112.5.2.4 The student will use appropriate eye contact, body movements, and voice register for audience engagement in formal and informal speaking situations.

Information and Media Literacy - Standard 3: Media Literacy

• LA.910.6.3.3 and LA.1112.6.3.3 - The student will demonstrate the ability to select print and nonprint media appropriate for the purpose, occasion, and audience to develop into a formal presentation.

Information and Media Literacy - Standard 4: Technology

- LA.910.6.4.1 The student will use appropriate available technologies to enhance communication and achieve a purpose (e.g. video, digital technology)
- LA.910.6.4.2 and LA.1112.6.4.2 The student will routinely use digital tools for publication, communication and productivity.
- LA.1112.6.4.1 The student will select and use appropriate available technologies (e.g. computer, digital camera) to enhance communication and achieve a purpose (e.g. video, presentations)

passive solar - construction technique of using structural elements to bring in heat when needed and deflect or vent heat when it is not desired.

photovoltaic - the effect of producing electric current using light from the sun

solar collector - a device that collects solar energy

solar furnace - a device that uses solar energy to heat , burn or melt

solar still - a device that uses solar energy to distill a liquid

This timeline lists the milestones in the historical development of solar technology from 1767 to 1891.

- 1767

Swiss scientist Horace de Saussure was credited with building the world's first solar collector, later used by Sir John Herschel to cook food during his South Africa expedition in the 1830s. See the Solar Cooking Archive for more information on http://solarcooking.org/saussure.htm Sassure and His Hot Boxes of the 1700s.

1816

On September 27, 1816, Robert Stirling applied for a patent for his economiser at the Chancery in Edinburgh, Scotland. By trade, Robert Stirling was actually a minister in the Church of Scotland and he continued to give services until he was eighty-six years old! But, in his spare time, he built heat engines in his home workshop. Lord Kelvin used one of the working models during some of his university classes. This engine was later used in the dish/Stirling system, a solar thermal electric technology that concentrates the sun's thermal energy in order to produce power.

-1839

French scientist Edmond Becquerel discovers the photovoltaic effect while experimenting with an electrolytic cell made up of two metal electrodes placed in an electricity-conducting solution—electricity-generation increased when exposed to light.

1860s

French mathematician August Mouchet proposed an idea for solar-powered steam engines. In the following two decades, he and his assistant, Abel Pifre, constructed the first solar powered engines and used them for a variety of a pplications. These engines became the predecessors of modern parabolic dish collectors.

1873

Willoughby Smith discovered the photoconductivity of selenium.

1876

1876 William Grylls Adams and Richard Evans Day discover that selenium produces electricity when exposed to light. Although selenium solar cells failed to convert enough sunlight to power electrical equipment, they proved that a solid material could change light into electricity without heat or moving parts.

1880

Samuel P. Langley, invents the bolometer, which is used to measure light from the faintest stars and the sun's heat rays. It consists of a fine wire connected to an electric circuit. When radiation falls on the wire, it becomes very slightly warmer. This increases the electrical resistance of the wire.

1883

Charles Fritts, an American inventor, described the first solar cells made from selenium wafers.

1887

Heinrich Hertz discovered that ultraviolet light altered the lowest voltage capable of causing a spark to jump between two metal electrodes.

1891

Baltimore inventor Clarence Kemp patented the first commercial solar water heater. For more information on the water heater, see the http://www.california.solarcenter.org/history_solarthermal.html California Solar Center.

This timeline lists the milestones in the historical development of solar technology in the 1900s.

-1904

Wilhelm Hallwachs discovered that a combination of copper and cuprous oxide is photosensitive.

-1905

Albert Einstein published his paper on the photoelectric effect (along with a paper on his theory of relativity).

-1908

1908 William J. Bailley of the Carnegie Steel Company invents a solar collector with copper colls and an insulated box—roughly, it's present design.

-1914

The existence of a barrier layer in photovoltaic devices was noted.

-1916

Robert Millikan provided experimental proof of the photoelectric effect.

-1918

Polish scientist Jan Czochralski developed a way to grow single-crystal silicon. For more information on Czochralski, see the article http://rekt.pol.lublin.pl/users/ptwk/art2.htm Professor Jan Czolchralski (1885-1953) and His Contribution to the Art and Science of Crystal Growth.

-1921

Albert Einstein wins the Nobel Prize for his theories (1904 research and technical paper) explaining the photoelectric effect.

-1932

Audobert and Stora discover the photovoltaic effect in cadmium sulfide (CdS).

-1947

1947 Passive solar buildings in the United States were in such demand, as a result of scarce energy during the prolonged W.W.II, that Libbey-Owens-Ford Glass Company published a book entitled Your Solar House, which profiled forty-nine of the nation's greatest solar architects http://www.californiasolarcenter.org/history_solarthermal.html.

1953

Dr. Dan Trivich, Wayne State University, makes the first theoretical calculations of the efficiencies of various materials of different band gap widths based on the spectrum of the sun.

1954

1954 Photovoltaic technology is born in the United States when Daryl Chapin, Calvin Fuller, and Gerald Pearson develop the silicon photovoltaic (PV) cell at Bell Labs—the first solar cell capable of converting enough of the sun's energy into power to run everyday electrical equipment. Bell Telephone Laboratories produced a silicon solar cell with 4% efficiency and later achieved 11% efficiency. See the http://www.californiasolarcenter.org/history_pv.html for more information.

1955

Western Electric began to sell commercial licenses for silic on photovoltaic (PV) technologies. Early successful products included PV-powered dollar bill changers and devices that decoded computer punch cards and tape.

- Mid-1950s

Architect Frank Bridgers designed the world's first commercial office building using solar water heating and passive design. This solar system has been continuously operating since that time and the Bridgers-Paxton Building, is now in the National Historic Register as the world's first solar heated office building.

-1956

William Cheny, U.S. Signal Corps Laboratories, approaches RCA Labs' Paul Rappaport and Joseph Loferski about developing photovoltaic cells for proposed orbiting Earth satellites.

-1957

Hoffman Electronics achieved 8% efficient photovoltaic cells

1958

T. Mandelkorn, U.S. Signal Corps Laboratories, fabricates n-on-p silicon photovoltaic cells (critically important for space cells; more resistant to radiation).

-1958

Hoffman Electronics achieves 9% efficient photovoltaic cells.

-1958

The Vanguard I space satellite used a small (less than one watt) array to power its radios. Later that year, Explorer III, Vanguard II, and Sputnik-3 were launched with PV-powered systems on board. Despite faltering attempts to commercialize the silicon solar cell in the 1950s and 60s, it was used successfully in powering satellites. It became the accepted energy source for space applications and remains so today. For more information, see the Smithsonian National Air and Space Museum's information on http://www.nasm.si.edu/nasm/dsh/artifacts/SS-vanguard.htm "Vanguard 1".

-1959

Hoffman Electronics achieves 10% efficient, commercially available photovoltaic cells. Hoffman also learns to use a grid contact, reducing the series resistance significantly.

-1959

On August 7, the Explorer M satellite is launched with a photovoltaic array of 9600 cells (1 cm \times 2 cm each). Then, on October 13, the Explorer VII satellite is launched.

1960

Hoffman Electronics achieves 14% efficient photovoltaic cells.

-1960

Silicon Sensors, Inc., of Dodgeville, Wisconsin, is founded. It starts producing selenium and silicon photovoltaic cells.

-1962

Bell Telephone Laboratories launches the first telecommunications satellite, the Telstar (initial power 14 watts).

1963

Sharp Corporation succeeds in producing practical silicon photovoltaic modules.

-1963

Japan installs a 242-watt, photovoltaic array on a lighthouse, the world's largest array at that time.

4

1982

Volkswagen of Germany begins testing photovoltaic arrays mounted on the roofs of Dasher station wagons, generating 160 watts for the ignition system.

-1982

The Florida Solar Energy Center's

http://www.fsec.ucf.edu/About/quals/index.htm#recent.con "Southeast Residential Experiment Station" begins supporting the U.S. Department of Energy's photovoltaics program in the application of systems engineering.

1982

Worldwide photovoltaic production exceeds 9.3 megawatts.

-1983

ARCO Solar dedicates a &-megawatt photovoltaic substation in central California. The 120-acre, unmanned facility supplies the Pacific Gas & Electric Company's utility grid with enough power for 2,000-2,500 homes.

-1983

Solar Design Associates completes a stand-alone, 4-kilowatt powered home in the Hudson River Valley.

-1983

Worldwide photovoltaic production exceeds 21.3 megawatts, with sales of more than 250 million.

-1984

The Sacrament o Municipal Utility District commissions its first 1-megawatt photovoltaic electricity generating facility.

-1985

The University of South Wales breaks the 20% efficiency barrier for silicon solar cells under 1-sun conditions

-1986

1986 The world's largest solar thermal facility, located in Kramer Junction, California, was commissioned. The solar field contained rows of mirrors that concentrated the sun's energy onto a system of pipes circulating a heat transfer fluid. The heat transfer fluid was used to produce steam, which powered a conventional turbine to generate electricity.

– Photo Caption: This solar power plant located in Kramer Junction, California, is the largest of nine such plants built in the 1980's. During operation, oil in the receiver tubes collects the concentrated solar energy as heat and is pumped to a power block located at the power plant for generating electricity. (Warren Gretz, NREL / PUX01224)

-1986

ARCO Solar releases the G-4000 — the world's first commercial thin-film power module.

-1988

Dr. Alvin Marks receives patents for two solar power technologies he developed: Lepcon and Lumeloid. Lepcon consists of glass panels covered with a vast array of millions of aluminum or copper strips, each less than a micron or thousandth of a millimeter wide. As sunlight hits the metal strips, the energy in the light is transferred to electrons in the metal, which escape at one end in the form of electricity. Lumeloid uses a similar approach but substitutes cheaper, film-like sheets of plastic for the glass panels and covers the plastic with conductive polymers, long chains of molecular plastic units.

Warren De tz NREL / POD 1221

1991

President George Bush redesignates the U.S. Department of Energy's Solar Energy Research Institute as the National Renewable Energy Laboratory.

-1992

1992 University of South Florida develops a 15.9% efficient thin-film photovoltaic cell made of cadmium telluride, breaking the 15% barrier for the first time for this technology.

 Photo caption: Thin-film modules, such as this one made with amorphous silicon, can be deposited on a variety of low-cost substrates, including glass and flexible plastic sheets. (Warren Gretz, NREL / PLX03541)

1992

A 7.5-kil owatt prototype dish system using an advanced stretched-membrane concentrator becomes operational.

-1993

1993 Pacific Gas & Electric completes installation of the first grid-supported photovoltaic system in Kerman, California. The 500-kilowatt system was the first "distributed power" effort.

 Photo caption: Pacific Gas and Electric Company (PG&E) installed a 500-kilowait photovoltaic system at its Kerman substation to reinforce a weak feeder. PG&E found that distributed systems like this have measurable benefits such as increased system reliability and peak-shaving capabilities. (Terry O'Rourke / PIX00253)

-1994

The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute) completes construction of its

http://www.nrel.gov/buildings/highperformance/serf.html "Sdar Energy Research Facility", which was recognized as the most energy-efficient of all U.S. government buildings worldwide. It features not only solar electric system, but al so a passive solar design.

-1994

First solar dish generator using a free-piston Stirling engine is tied to a utility grid.

-1994

The National Renewable Energy Laboratory develops a solar cell—made from gallium indium phosphide and gallium arsenide—that becomes the first one to exceed 30% conversion efficiency.

-1996

The world's most advanced solar-powered airplane, the Icare, flew over Germany. The wings and tail surfaces of the Icare are covered by 3,000 super-efficient solar cells, with a total area of 21 mz. See http://www.ifb.uni-stuttgart.de/icare/pictures/ica-fl2.jpg "Solar Aircraft of the University of Stuttgart" for more information about Icare.

-1996

The U.S. Department of Energy, along with an industry consortium, begins operating Solar Two—an upgrade of its Solar One concentrating solar power tower project. Operated until 1999, Solar Two demonstrated how solar energy can be stored efficiently and economically so that power can be produced even when the sun isn't shining. It also fostered commercial interest in power towers. See http://www.energylan.sandia.gov/sunlab/Snapshot/STFUTURE.htm "Solar Two Demonstrates Clean Power for the Future" for more information.

— Photo Caption: The Solar Two project will improve the 10-megawatt Solar One central receiver plant in Daggett, CA. A field of mirrored heliostats focuses sunlight on a 300-foot (91 meter) tower, which will be filled with molten nitrate sait. The sait flows like water and can be heated to 1050 degrees F. The sait is pumped through a steam generator to produce the steam to power a conventional, high-efficiency steam turbine to produce electricity. (566 degrees C). (Sandia National Laboratories / PIX01701)

8

SPECTROLAB

Warren De la NREL / PODOK83

-1998

The remote-controlled, solar-powered aircraft, "Pathfinder" sets an altitude record, 8**0,000** feet, on its 3 oth consecutive flight on August 6, in Monrovia, California. This altitude is higher than any prop-driven aircraft thus far.

-1998

Subhendu Guha, a noted scientist for his pioneering work in a morphous silicon, led the invention of flexible solar shingles, a roofing material and state-of-the-art technology for converting sunlight to electricity.

 Photo caption: The PV shingles mount directly on to the roof and take the place of a sphalt shingles. The system is connected to the utility grid through an inverter and produces electricity on customer's side of the meter. United Solar Systems Corporation / PIX03636)

-1999

1999 Construction was completed on 4 Times Square, the tallest skyscraper built in the 1990s in New York City. It incorporates more energy-efficient building techniques than any other commercial skyscraper and also includes building-integrated photovoltaic (BIPV) panels on the 37th through 43rd floors on the southand west-facing facades that produce a portion of the buildings power.

— Photo Caption: 4 Times Squares most advanced feature is the photovoltaic skin, a system that uses thim film PV panels to replace traditional glass cladding material. The PV ourtain wall extends from the 36th to the 48th floor on the south and east walls of the building, making it a highly visible part of the mintown New York styline. The developer, the Durst Organization, has implemented a wide variety of health y building and energy efficiency strategies. Kiss + Cathcart Architects designed the building's PV system in collaboration with Fox and Fowle, the base building architects. Energy Photovoltaics of Princeton, NJ, developed the custom PV modules. (Kiss + Cathcart - RXD6456)

-1999

Spectrolab, Inc. and the National Renewable Energy Laboratory develop a photovoltaic solar cell that converts 32.3 percent of the sunlight that hits it into electricity. The high conversion efficiency was achieved by combining three layers of photovoltaic materials into a single solar cell. The cell performed most efficiently when it received sunlight concentrated to 50 times normal. To use such cells in practical applications, the cell is mounted in a device that uses lenses or mirrors to concentrate sunlight onto the cell. Such "concentrator" systems are mounted on tracking systems that keep them pointed toward the sun.

-1999

The National Renewable Energy Laboratory achieves a new efficiency record for thin-film photovoltaic solar cells. The measurement of 18.8 percent efficiency for the prototype solar cell topped the previous record by more than 1 percent.

-1999

Cumulative worldwide installed photovoltaic capacity reaches 1000 megawatts.

This timeline lists the milestones in the historical development of solar technology in the 2000s.

-2000

First Solar begins production in Perrysburg, Ohio, at the world's largest photovoltaic manufacturing plant with an estimated capacity of producing enough solar panels each year to generate **100** megawatts of power.

2000

At the International Space Station, astronauts begin installing solar panels on what will be the largest solar power array deployed in space. Each "wing" of the array consists of 32,800 solar cells.

-2000

Sandia National Laboratories develops a new inverter for solar electric systems that will increase the safety of the systems during a power outage. Inverters convert the direct current (DC) electrical output from solar systems into alternating current (AC), which is the standard current for household wiring and for the power lines that supply electricity to homes.

- 2000

Two new thin-film solar modules, developed by BP Solarex, break previous performance records. The company's 0.5-square-meter module achieves 10.8 % conversion efficiency—the highest in the world for thin-film modules of its kind. And its 0.9-square-meter module achieved 10.6% conversion efficiency and a power output of 91.5 watts — the highest power output for any thin-film module in the world.

2000

A family in Morrison, Colorado, installs a 12-kilowatt solar electric system on its home—the largest residential installation in the United States to be registered with the U.S. Department of Energy's http://www.millionsolarroofs.com/ "Million Solar Roofs" program. The system provides most of the electricity for the 6,000-square-foot home and family of eight.

- 2001

Home Depot begins selling residential solar power systems in three of its stores in San Diego, California. A year later it expands sales to include 61 stores nationwide.

-2001

NASA's solar-powered aircraft – Helios sets a new world record for non-rocketpowered aircraft: 96,863 feet, more than 18 miles high.

— Photo caption: The Helio's Prototype Ilying wing is shown near the Hawaiian Islands during its first test flight on sofar power. (Photo Courtesy of NASA, Dryden Flight Research Center Photo Collection)

-2001

The National Space Development Agency of Japan, or NASDA, announces plans to develop a satellite-based solar power system that would beam energy back to Earth. A satellite carrying large solar panels would use a laser to transmit the power to an airship at an altitude of about 12 miles, which would then transmit the power to Earth.

- 2001

Terra Sun LLC develops a unique method of using holographic films to concentrate sunlight onto a solar cell. Concentrating solar cells typically use Fresnel lenses or mirrors to concentrate sunlight. Terra Sun claims that the use of holographic optics allows more selective use of the sunlight, allowing light not needed for power production to pass through the transparent modules. This

10 capability allows the modules to be integrated into buildings as skylights.

- 2001

PowerLight Corporation places online in Hawaii the world's largest hybrid system that combines the power from both wind and solar energy. The grid-connected system is unusual in that its solar energy capacity — 175 kilowatts— is actually larger than its wind energy capacity of 50 kilowatts. Such hybrid power systems combine the strengths of both energy systems to maximize the available power.

2001

British Petroleum (BP) and BP Solar announce the opening of a service station in Indianapolis that features a solar-electric canopy. The Indianapolis station is the first U.S. "BP Connect" store, a model that BP intends to use for all new or significantly revamped BP service stations. The canopy is built using translucent photovoltaic modules made of thin films of silicon deposited onto glass.

— Photo Caption: The PowerView Semi-Transparent Photovoltaic Module, developed by NREL and BP Solar, is a novel system that serves as a roof or window while creating power for a building. BP has to date incorporated the system in more that 150 of its service stations and the panels are envisioned to become a functional replacement for conventional glass in walls, canopies, advisms, entrances and facades in commercial and residential architecture. (Warren Gretz, NREL / PK 11979)

-2002

NASA successfully conducts two tests of a solar-powered, remote-controlled aircraft called Pathfinder Plus. In the first test in July, researchers demonstrated the aircraft's use as a high-altitude platform for telecommunications technologies. Then, in September, a test demonstrated its use as an aerial imaging system for coffee growers.

— Photo Caption: The Pathfinder Plus is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. This solar-powered aircraft could stay airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covering most of the upper wing surface provide power for the aircraft's electric motors, avionics, communications and other electronic systems. It also has a backup battery system that can provide power for between two and five hours to allow limited-duration flight after dark (Photo Courtesy of NASA, Dryden Flight Research Center Photo Collection).

2002

Union Pacific Railroad installs 350 blue-signal rail yard lanterns, which incorporate energy saving light-emitting diode (LED) technology with solar cells, at its North Platt, Nebraska, rail yard—the largest rail yard in the United States.

2002

innovative method of producing solar cells, called Spheral Solar technology. The technology—based on tiny silicon beads bonded between two sheets of aluminum foil—promises lower costs due to its greatly reduced use of silicon relative to conventional multicrystalline silicon solar cells. The technology is not new. It was championed by Texas Instruments (TI) in the early 1990s. But despite U.S. Department of Energy (DOE) funding, TI dropped the initiative. See the DOE http://www.nrel.gov/pvmat/ti.html "Photovoltaic Manufacturing Technology" Web site.

ATS Automation Tooling Systems Inc. in Canada starts to commercialize an

-2002

11

The largest solar power facility in the Northwest—the 38.7-kilowatt White Bluffs Solar Station—goes online in Richland, Washington.

-2001

Powerlight Corporation installs the largest roof top solar power system in the United States—a 1.18 megawatt system—at the Santa Rita Jail in Dublin, California.

— Photo Caption: In Spring 2002, Alameda County, CA successfully completed the fourth largest solar electric system in the world atop the Santa Rifa Jail in Dublin, California. This solar installation, the United States' largest rooftop system, was commissioned to help Alameda County reduce and stabilize future energy costs. This smart energy project reduces the jail's use of utility-generated electricity by 30% through solar power generation and energy conservation. Clean energy is generated by a 1.18 Megawatt system consisting of three acres of solar electric or photovoltaic (PV) panels. (Countesy of PowerLight Corporation / PIX12398)

Here's a look at the expected future direction of solar technology.

All buildings will be built to combine energy-efficient design and construction
practices and renewable energy technologies for a net-zero energy building. In
effect, the building will conserve enough and produce its own energy supply to
create a new generation of cost-effective buildings that have zero net annual
need for non-renewable energy.

– Photo Capition: This home was built by students from the University of Colorado (CU) for the first Solar Decathion, a competition sponsored by the U.S. Department of Energy (DOE). Student teams are stallenged to integrate aesthetics and modern conveniences with maximum energy production and optimal efficiency. Each collegiste team will build a uniquely designed \$00-ft2 -- 800-ft2 house. Decathletes will transported their houses to the National Mail in Washington D.C. for the competition in the fall of 2002. The CU team took first prize in the competition overall. (Chris Gunn Photography / PIX12165)

Photovoltaics research and development will continue intense interest in new materials, cell designs, and novel approaches to solar material and product development. It is a future where the clothes you wear and your mode of transportation can produce power that is clean and safe.

Technology roadmaps for the future outline the research and development path to full competitiveness of concentrating solar power (CSP) with conventional power generation technologies within a decade. The potential of solar power in the Southwest United States is comparable in scale to the hydropower resource of the Northwest. A desert area to miles by 15 miles could provide 20,000 megawatts of power, while the electricity needs of the entire United States could theoretically be met by a photovoltaic array within an area too miles on a side. Concentrating solar power, or solar thermal electricity, could harness the sun's heat energy to provide large-scale, domestically secure, and environmentally friendly electricity.

— Photo Caption: This is the world's largest solar power facility, located near Kramer Junction, CA. The facility consists of five. Solar Electric Generating Stations (SEGS), with a combined capacity of 150 reegawatts. At capacity, that is enough power for 150,000 homes. The facility covers more than 1000 acres, with over 1 million square meters of collector surface. (Kramer Junction Company / PIX11070)

 The price of photovoltaic power will be competitive with traditional sources of electricity within 10 years.

 Solar electricity will be used to electrolyze water, producing hydrogen for fuel cells for transportation and buildings.

— Photo Caption: SunLine, a California transit agency, is being evaluated as they add state-of-the-art hydrogen fuel cell buses to their fleets and set up infrastructure facilities for fueling and maintenance. The hydrogen is produced at the site using sofa+powered electrolysis and natural gas reforming. Because fuel cell buses aren't yet commercially available, these demonstration projects are used to better understand the technology and plan for the future. (Richard Parish / PIX10732)

Used with permission, EERE, U.S. Department of Energy

12

Solar History Timeline Project

- 1. Research the information at http://www.californiasolarcenter.org/history.html John Perlin's links at the California Solar Center website summarize the history and development of photovoltaics, solar thermal and passive solar architecture. Review each of these three areas on the website to better understand the three main subject areas.
- 2. In your group select (or receive from your instructor) one of the nine topics for further research. The topics are:
 - Early development and use of solar energy from 600 B.C.E. 1700s
 - Historical development of passive solar architecture
 - Historical use of passive solar architecture
 - Historical development of solar thermal
 - Historical use of solar thermal
 - Historical development of photovoltaics
 - Historical use of photovoltaics
 - Solar Energy Scientists select major contributing scientists, include both achievement and personal information
 - Future research and development in the field of solar energy
- 3. Research your topic using the Department of Energy's timeline at http://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf Focus your information to your topic only.
- 4. Use these two references and one more reference of your choice to gather information with the purpose of developing a class presentation covering your solar energy topic.
- 5.
- 6. Presentation: Your group's expectations and goals should be based on meeting the criteria in the presentation rubric.

Class Discussion

- 1. Decide on one or more features of using solar energy in our society which is the most effective with the least environmental impact.
- 2. Develop an action plan to increase its use as a non-polluting, greener, energy source in our society using the historical development and use that you learned during your class' presentations.
- 3. Defend your plan and its need for future political support as a way to supplement our society's future energy needs and reduce the use of other polluting energy sources. Be ready to answer the following questions:
 - What is your reasoning for selecting this aspect of solar energy? How was this

aspect of solar energy used in the past? Why should we increase its future use? What strategies or conditions are needed to implement its use? What barriers or restrictions need to be considered?

- •
- •
- When should we begin implementing this plan? •