

International Consortium for Advanced Manufacturing Research UNATE DE -

The world's first industry-led consortium (501.c.6 non-profit) for the manufacturing of advanced smart sensors and integrated devices

Innovation Networks & Open Innovation Programs That Bring Industry, Universities And Governments Together

Industry

- Emerging Technologies
- Manufacturing
- Commercialization

Government

- International
- State of Florida
- National research labs and agencies
- Attract joint funds

Universities

- Universities in U.S., Europe, and Asia
- Funded research
- New ideas and approaches
- Partnered research capabilities

Suppliers

- Equipment
- Materials
- Software
- Industry R&D Labs & Programs

ICAMR is a 501.c.6 industry-led consortium that will provide openinnovation platforms that drive high-tech manufacturing through:

- Manufacturing scale-up of III-V and other novel materials
 - Faster performance at lower power, wide band gap, high voltage and frequency stability, chemical and extreme environment robustness,...
- Development of High Volume Manufacturing process equipment for next generation production lines & "Trusted Foundries"
- Integration of advanced devices and systems on 200 & 300 mm Si
 - Silicon is the ultimate integrator can add virtually any device all on one carrier, at any technology node
- 2.5 / 3-D device integration, and advanced packaging techniques
- Development of new test, metrology, reliability models for next generation materials
- Workforce development

The Promise of Smart Sensors

Next disruptive market explosion will be "semiconductor-based" connected devices – led by advanced sensors and complimentary photonic devices

Renowned Manufacturing Development Centers

Initial Focus: Smart Device Fabrication

1. ADVANCED MATERIALS DEVELOPMENT

III-V and other novel materials deposited on200mm/300mm Si substrates for advanced devices:

- Sensors
- Photonic devices
- Integrated CMOS devices

33

Ge

12

Gd Tb

13

14

31 (13

104

49

58 Ce

39

Lanthanides

Actinides

Group → I Period

2.

DEVICE DEVELOPMENT PILOT LINES

Device processing, including novel techniques for device personalization, functionalization, and CMOS integration

3. SYSTEM INTEGRATION

Packaging, test, and systems development - including ultra-high density 2.5/3-D interposers

III-V material advantages

GaN / SiC / Si / GaAs high power RF transistors comparison

✓ Johnson's and Keyes's FM (Figure of Merritt)

= performance of power transistors

✓ 1/Ron

= close relationship to the power efficiency (lower operation costs, improved power density and size, reduced cost of ownership)

III-V scale-up W.S. during SEMICON

Key Drivers and Highest Scored Challenges

- Deposition/Growth:
 - Defects, Equipment design, Temperature, Throughput
- Metrology:
 - Hybrid methods, Depth profiling, Gas purity, HVM capability
- Contamination control:
 - Dopants, Interface defects, Wet+dry etching, Monitoring
- **Process:** layers integration, generated defects, HVM CoO
- ESH: permits, abatement, chamber cleaning, training
- Facilities: hazardous materials, equip. segregation, alarms, flexibility
- **Device integration:** device nodes, thermal, flex. subst.
- Scalability: 200mm/300mm tool sets
- **Standards:** new SEMI committee, design rules, roadmap
- Others: educated workforce for III-V processing

III-V Project Timeline

	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16	Aug-16	Sep-16	Oct-16	Nov-16	Dec-16
Develop defect free GaN on Si (111)												
Develop defect free GaN on Si (100)												
GaN device design and optimization												
Fabricate GaN devices												
Initial device testing												
Domonstrato doviso porformanco												
Delie hility testing												
Reliability testing												
Deskezing										-10 OCC-10 NOV-10		
Раскавілв												

	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17
Develop defect free GaN on Si (100)												
Develop backside CMOS fabrication												
Tech Transfer to ICAMR facility												
Demonstrate device performance												
Reliability testing												
Packaging												

Example: Photonic Sensor Device

Advanced manufacturing of multimaterial photonic integrated circuits, devices, and systems, including packaging, reliability, and testing, on CMOS platforms

Device Manufacturing Development Model

Advanced Materials Development Line – key performance attributes:

GaN, GaAs, InGaAs, InP, SiGe, Ge; others - CNT, SiC, C, Graphene, Magnetic (MOCVD/CVD/ALD dep. tools)

- High sensitivity
- Low Power
- Harsh environments performance

ICAMR 2.5 / 3-D Interconnect PGM

- Device scale connections (TSV, Interposer, Bumps) at 1 x 10⁶ density
- Accelerate to achieve ITRS targets in the next 4 years
- Develop fabrication and assembly process for an order of magnitude beyond current state-of-the-art 2.5D/3D Integration:
 - Interposer pitch decreased from 45 to 5 μm
 - TSV pitch reduced from 180 to 8 μm
 - Depth from 100 to 50 μm
- Explore Additive Interposer Manufacturing CNT/Dielectric Printing 12

ICAMR Tool Roadmap

Phase 0

Engage industry and define initial technology programs. Establish partners, define ICAMR tool sets and infrastructure needs. Processing will be done at partner labs/fabs.

Imec / ICAMR Partnership Tool Commonalities by Phases

Equipment Type	Phase I Materials Distforms	Phase II	Phase III Backaging & Tast	Phase IV	Phase V Book End		
				z.s-sb interconnect			
Sorter/Inspection	*	*	*	*	*		
Wet Clean	*	*	*	*	*		
Wet etch	*	*	*	*	*		
	*	*	*	*	*		
AFM W/C-AFM CAPABILITY	*	*	*	*	*		
VASE (SPECTROSCOPIC	*	*	*	*	*		
3D MICROSCOPE Contour	*	*	*	*	*		
SURFACE DEFECT	*	*	*	*	*	l	
PHOTOLUMINESCENCE	*	*			*	1	
CVD	*	*	*	*	*	l	
MOCVD	*				*	1	
ALD	*	*	*	*	*	1	
TXRF		*			*	1	
PROFILER, SURFACE ANAL		*	*	*	*		
FILM THICKNESS/DEFECT		*		*	*		
Litho (E-Beam)		*	*	*	*		Phase I
Litho Track		*	*	*	*		
PVD / Seed		*		*	*		
Furnace/RTP		*	*	*	*		Phase II
PR Clean/Asher		*		*	*		i nase n
CMP-Metal		*		*	*		
		*			*		
		*			*		Phase II
FecVD		*		*	*		
		*			*		
Etch Metal				¥.			Phase IV
Etch Deep Si, TSV		*		*	*		
Adv Packaging & Test			*	*	*		
Plasma Etch			*	*	*		
Flip Chip			*	*	*		
Wafer Mounter			*	*	*		
Wire bonder			*	*	*		
Die Pick and Place			*	*	*	1	
Plate-Etch-Strip			*	*	*	1	
Wafer Bonding			*	*	*	1	
Wafer Grinder			*	*	*	1	
Laser / Saw Dicer			*	*	*		
Low K Dielectric Dep Spin/CV	D			*	*	1	
Litho (adv 248 or 193nm)				*	*		
Cu Plating				*	*		
Ta/TaN Barrier seed				*	*		
Anneal				*	*		
Dry & Wet Strip				*	*		
TSV depth measurement				*	*		
Temp Bonder				*	*		
TEOS liner				*	*		
Cu Plating ** (addt'l module)			1	*	*		
Edge trim				*	*		
Grind				*	*		
Dry Etch				*	*		
				*	*		
				*	*		
LI ox/nit pass	l		1	*	*		
Taping & Detaping				*	*		
Reflow					-1-		4
Chipbonding & test				*	*		12
Die to Database Inspection					*	1	

Industry and the US Government are becoming very interested in the opportunities to leverage ICAMR's infrastructure and resources. In the very near future, ICAMR plan to pursue a variety of Federal grants:

- Institutes of Manufacturing Innovation (\$70M, multi-state consortium efforts)
 - Smart Manufacturing (DOE; FOA expected Q4 2015; award in 2016)
 - Advanced Materials Processing (agency and timing TBD)
 - Open Topic (NIST; 2016)
- DOD: Device / System Foundry Initiatives (Trusted Foundry)
- NIH
 - PRISMS (pediatric sensors)
 - Healthy, Independent Living (wearable sensors for geriatric care)
 - Bioengineering Research Partnership (with National Institute on Aging)
- DOE
 - ARPAe: harsh environment sensors (wireless rotary assets)
 - Next-generation manufacturing processes
- NSF
 - Smart and Connected Health (wearable sensors/assistive technology)
 - Cyber IT Research Infrastructure Programs

For more info or to partner, please contact Andrea Wesser – andrea.wesser@ucf.edu or 407-353-3469

Provide US based technology solutions for next generation devices, systems, and pilot-line production

- Multiple node (<32nm) device integration of advanced materials on Si (200mm)
 - Silicon is the ultimate integrator can add virtually any device all on one carrier, at any technology node
- Manufacturing scale-up of III-V materials and next generation devices
 - Faster performance at lower power, wide band gap, high voltage and frequency stability, chemical and extreme environment robustness,...
 - Development of High Volume Manufacturing processes, equipment, supply chain
- Provide DOD and DOD supply chain with the most advanced pilot-line in the world for Low Volume / High Mix / High Value products – "Trusted Foundry"

(specialized capabilities & flexibility that does not exist elsewhere)

- Integration of high performance sensors, photonics, power electronics, RF devices, etc. on CMOS both monolithically and 2.5/3D integration
- Leverage national labs/facilities and >\$250M of regional investments in facility and processing infrastructure

Imec / ICAMR Partnership Start-up Funding Partners

<u>Pre-Opening Start-up Funds Secured = </u>\$168M

Osceola County

- \$138M from Osceola County
- Design/Build and equip 100,000 square foot center
- 20 acres plus inkind support for power, water, and waste disposal

UCF

- **\$10M** non-state and non-tuition funds to design and build center and start-up costs
- **\$7M** in-kind for focused hires and resource support
- **30 year lease** of center from Osceola County at \$1 per year

- **\$1M** for initial operating cost
- Up to \$5M matching funds over five years for specific research projects
- \$750K from USF,
 FIU and UF

State of FL

\$2M State of Florida Quick Action Close Fund

Why Florida? – Business Opportunities

Florida / Regional – Business Opportunities

★ AVIATION / AEROSPACE

Home of Kennedy Space Center, Florida has 470+ companies ranging from aircraft and missiles to space exploration and

DEFENSE & HOMELAND SECURITY

The region is home to 20 major military installations, 3 unified combatant commands, 2 academic security institutes and nearly all of the nation's leading contractors

OPTICS & PHOTONICS

2,000+ specialists employed in some 100 companies in the region's optics and photonics sector providing defense, communications and other industries with critical tools

✦ HEALTH LIFE SCIENCES

1,100+ biotech, pharma & medical devices companies and 214 hospitals; including some of the nation's most highly regarded research centers and health systems

Site: Kissimmee, Florida

ICAMR – 109,000 sq ft two level state-of-the-art R&D lab/fab facility - ~\$140M

- 30,000 sq ft of Class 1 1000 cleanroom
- 22,500 sq ft of elevated waffle slab / sub fab
- 10,000 sq ft of lab / office area (plus addition building support areas services, loading dock,..)
- Site located on a new dedicated 350 acre research park
- All utilities (electric, water, wastewater) available to site
- Completion target is early 2017

Imec / ICAMR Partnership Facilities Design and Construction

DESIGN	Duration (mos.)	Start	Finish
Programming	3	16-Mar-15	12-Jun-15
Conceptual Design	2	20-Apr-15	22-June-15
Advanced Schematic Design	1	6-July-15	10-Aug-15
Design Development	1.25	17-Aug-15	25-Aug-15
Construction Documents	5	17-Aug-15	19-Jan-16

CONSTRUCTION	Duration (mos.)	Start	Finish
Site Construction (Early Site work & Foundations)	3.5	07-Oct-15	19-Jan-16
Shell Construction	8	14-Jan-16	16-Sep-16
Shell Dry-in			16-Feb-17
Equipment Start-up and Commissioning	7	29-July-16	21-Feb-17
Building Completion "Substantial"			21-Feb-17
Initial Tool Installation	1	3-Mar-17	31-Mar-17
Building Completion "Final"			31-Mar-17

Facilities Layout

- 20 acres and 100k ft2 ICAMR lab/fab to start
- 350 acres for high-tech campus and industry partners

Interim ICAMR Office

Downtown Kissimmee, FL

Site Location

- ✓ Year 1 infrastructure and operational funding secured, >\$165M
- Design phase of construction process started defining equipment and building layout to best serve industry and emerging technologies
- Already involved in several major U.S. Federal grant submissions
 - 7 more planned for 2016!
- Securing key research institutions/processing partners
- Defining specific sensors and photonics applications / industry sectors
- Engage / recruit key US and international industry members
 - Complete eco system device industry, equipment manufactures, supply chain, end-users,...
 - Launch initial industry-based programs by Q3, 2015 (performed at partner/member sites)
- Selecting equipment partners to develop and support next gen manufacturing tools
- Launch technology roadmapping initiatives standards activities to follow
- Develop internships and educational/training programs

Expand funding channels (state, national hubs, industry, JDPs,.)

icamr@ucf.edu • 407-742-4254 3 Courthouse Square, 2nd Floor Kissimmee, FL 34741

www.icamr.net

International Consortium for Advanced Manufacturing Research

APPENDIX

ACCR NO.

Early ICAMR Program Partners – 2015/16 Programs

Building from Semiconductor Manufacturing Trajectory

Consortium Value Proposition

The Challenge

Collaborative Solutions

•	Industry alignment	Create industry roadmap and standards	
•	Significant process, manufacturing, and technical design challenges	 Collaborative R&D, access to equipment and facilities to speed process and product development 	
•	Lack of industry collaboration, direction, and alignment around needs/challenges	• Utilize & expand consortium model across entire value chain, develop a robust supplier industry around common needs	
•	Access to leading-edge capabilities	 Build / provide access to advanced manufacturing development facilities & labs 	nt
•	Testing and reliability	Establish critical test, reliability, and analytical capabilities	
•	Manufacturing cost	 Improve manufacturing methods to enhance productivity and reduce costs 	
•	System integration, technology commercialization, & workforce development	 Launch specialized programs and infrastructure to support industry needs and growth 	
•	Emerging technologies manufacturing scale-up challenges – small and large businesses	 Leverage industry-government-university capabilities and resources through the consortium to provide manufacturing scale solutions 	

This model has been refined through years of testing:

- Multi-tiered programs and partnerships under one consortium structure
- Agility to adapt to changing needs
- Industry driven programs with high ROI shared cost, risk, and value
- Development-friendly IP model promoting innovations across supply chain

ICAMR's Future Centers

ICAMR's infrastructure is designed to support multiple emerging technology centers and industries

Phase I

MDF for Materials, Sensors, Packaging & Testing

Advanced Devices on Si -Universal Smart Sensors:

- Sensor / Photonics Device integration and prototyping

1) Adv Materials Development:

- Support a broad range of Emerging Technologies
 (BioMed, Environmental, Oil & Gas, Aerospace/Defense,...)
 Adv Personalization,
 Functionalization, Test, and
 Packaging Development Lines
 ICAMR focused industries/apps
 Systems/Device integration
- Supporting product dev

Advanced Energy Center

PV Programs

Next Gen PV (cSi & other) Solar Systems & Power Elect Smart Grid & Utility Solutions Test & Certification (World Leader) Energy Storage Nanotechnology in Energy Other renewables: - Fuel cells - Wind - Marine current power

Manufacturing Competitiveness Centers

Manufacturing Hubs/Programs

- Industry/Technology-driven initiatives

Next Generation Manufacturing Pilot lines:

- Flexible Electronics
- Advanced Sys & Packaging
- Additive Manufacturing
- NEMS/MEMS/MOEMS
- Biomedical/Microfluidics

International Emerging **Technologies** Emerging Tech Programs Cyber Security **Trusted Foundries** & device integrity Healthcare Technologies ESH Nanotechnologies Simulators & Models Roadmaps & Standards Joint University Centers Workforce Development

> This initiative has the potential to be a multi-billion \$\$\$ operation!

Manufacturing Phase Transition

Ohmic contacts Ti, Ti/Pt, Al, W, Ta, Pd, Au Metallization/Sputtering/ Ion implantation+annealing Personalization / Function (oxide, polymers or antib		Passivation layer Si₃N₄, SiN₅, etc	Phase I Processing	Phase II Processing	Phase III Processing	
		nalization podies)	Industry Partners – Packaging/Systems	Industry Partners – Packaging/Systems	ICAMR – Packaging/System	
	S p-InGaAlAs n-InGaAs n-InGaAlAs Ge		Industry Partners – Functionalization and Personalization	ICAMR – Functionalization & Personalization	ICAMR	
			Industry Partners to process Ohmic contacts and passivation	ICAMR	ICAMR	
	Si		ICAMR to Deposit III-V Materials & Ge buffer Layer	ICAMR	ICAMR	
Bas	seline Photonics / Se	nsor Device				

- Manufacturing technology roadmapping and standards
- Materials characterization, integration and manufacturing protocols
- Manufacturing development, prototyping and technology transfer commercialization
- Process and metrology equipment development
- Technology production scale-up and cost modeling
- Environmental / Safety / Health challenges, and sustainability
- Certification/test/reliability quality
- Policies/codes/permitting
- University, national labs, and international programs
- Member company application-specific support programs
- Workforce training educational and internship programs

Manufacturing Consortium Intellectual property model

- Consortium owns all IP created by assignees and direct hires working on collaborative programs (except assignee created patents)
- IP is licensed to all members participating in a program on a nonexclusive, royalty-free basis
- Patented inventions created by assignee:
 - Are owned by the member that is the employer of the assignee
 - Consortium members get nonexclusive, royalty-free license
- Inventions jointly created are jointly owned
- Members' patent license rights include right to make and have made their own products and sublicense to customers
- Partner and ICAMR will cooperate on publications and conferences to benefit industry
- Partner will own or have exclusive license to IP created in privately funded program – IP license for ICAMR use will be negotiated as needed

Trusted Integrated Chips (TIC)

Obtaining World-Class Performance Without Compromising Security

Program Manager: Dr. Carl McCanto; E-mail: carl.mccanto@iarpa.gov

H

Split manufacturing eliminates the need to disclose the complete wiring plan for an integrated circuit outside the US

- Off-shore foundnes lay down the transistor layer at the Front-End-Of-Line (FEOL) to obtain highest performance
- Chips come back to domestic. foundries for metallization at the Back-End-Of-Line (BEOL) for security.
- Obfuscation techniques further protect sensitive chip designs

MEM. More Date Moore

Logic families covered in TIC include: photonics, mixed-signal CMDS, analog, digital and RRAM, and sonics MENS

Over 90% of the world's foundry capacity is controlled by non-U.S. companies with the vast majority of it located in Asia. How to use it without compromising design security?

2013 Worldelde Geminanductor Foundry Production

SMC	Talwas	2.8	1	hard	Talwan	- 12
ilideal Foundries	Singapore, Germany	11.15	1	Rushong Grace	Cliss	12
Serving	Cares .	11.05	1	borgha	Korea	13
MC .	Talwan, Singapore	11.15	12	Territor	krael	12
SMC	China	526	11	84	5	1.0
Power City	Talwan	1.15	22	Variable	Korea.	1.0
	ISMC Global Foundries Samong GMC SAMC Forwards	SMC Taken Robal Foundries Singapore, Germany Kareas LMC Takens, Singapore SMC Dána Fouerchia Takens	SMC Taken SLOS Robal Foundries Singapore, Germany ILLIS Ramoung Kores ILLIS RANC Takens, Singapore ILLIS RANC Quina SLOS Foundria Takens LLIS	SMC Takes SLOC 7 Bohal Foundries Singapore, Germany 11.15 8 Samuarg Korea 10.05 9 AMC Takese, Singapore 10.15 10 SMC Dates Singapore 10.15 10 SMC Dates Singapore 11.15 10 SMC Dates Singapore 11.15 12	SMC Takes SLMC 7 Hanged Bohal Foundries Singapore, Germany 11.15 8 Hustong Groce Bandung Kores 10.16 9 Dougtu DMC Takese, Singapore 10.15 10 Towerkou DMC Data 5.26 11 BM Powerdia Takese 1.15 2 Macrachia	SMC Takes SLMS 7 Vasaard Takes Bohal Foundries Singapore, Germany SLMS 8 Hushong Groce Slina Banaung Karea SLMS 9 Bongbu Korea BMC Takean, Singapore SLMS 30 Foreeraau anal BMC Daha SLMS 10 Foreeraau anal BMC Daha SLMS 11 BM USA Powerdba Takean L1S 12 Manachia Korea

65 nm results - April 2014

Met	rics	071 (12mo)	CMU	Comell	LOSEHI Libi	RVS	Stanford
Technolo	gy Node	San Na	65 nm 1059	Sm nda	65 nm node	65 m nois	65 nm rede
Circut	Dgbi	>100K	>1M	3400K	>600K	65300K	>100K
Complexity (# of transistors)	AnalogMoed Signal	>1K	×sk	>30K	1.8K	RVS 65300K 1310K 100% 80% 105%	- 10
Spl1-Fabric	ation Yield	>75%	100%	100%	100%	100%	100%
Speed		>80%	102%	\$5%	100%	89%	100%
Power Dis	aipation	<125%	104%	105%	100%	105%	100%