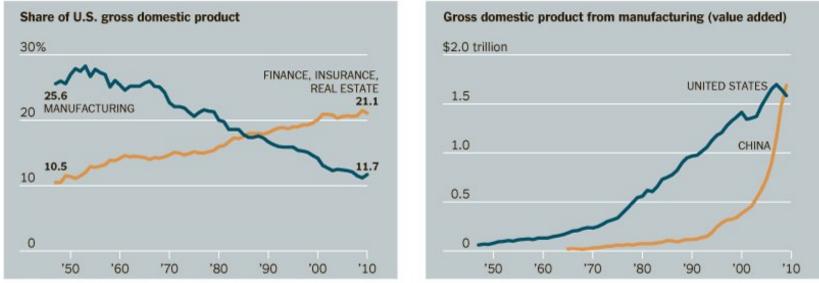


U.S. PV Manufacturing and Opportunities for Florida

Winston V. Schoenfeld Director, PVMC-FL

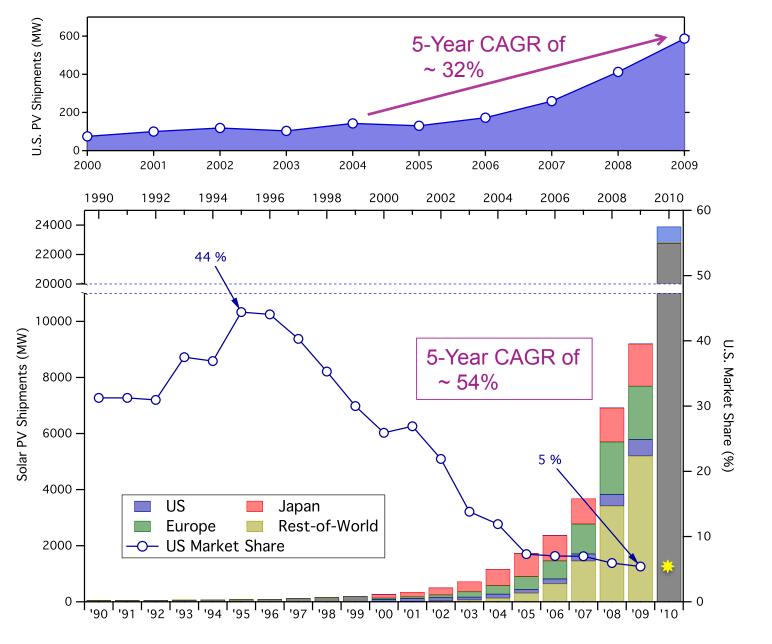
Associate Professor Florida Solar Energy Center & CREOL University of Central Florida November 2011



Copyright ©2011 PVMC, Inc., Photovoltaic Manufacturing Consortium, and the PVMC logo are registered servicemarks of SEMATECH, Inc. All other servicemarks and trademarks are the property of their respective owners.

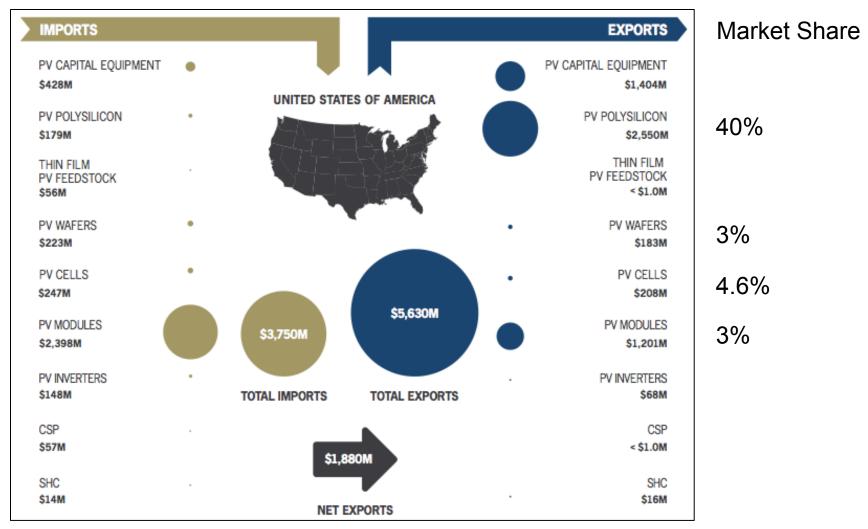
Manufacturing Share of Gross Domestic Product

- U.S.: 11.7% China: 25%
- By Comparison it was 28% in U.S. in 1950's



Sources: Bureau of Economic Analysis; the World Bank

- <u>Note</u>: Not due to reduced manufacturing, but rather slower growth rate.
- Why care? General estimates are that every new manufacturing job generates 5 other jobs in the economy.



The History and Status of U.S. PV Manufacturing

Manufacturing is not just Cells/Modules

Note: U.S. had \$247M trading surplus with China

Government Support of PV Manufacturing (loan guarantees)

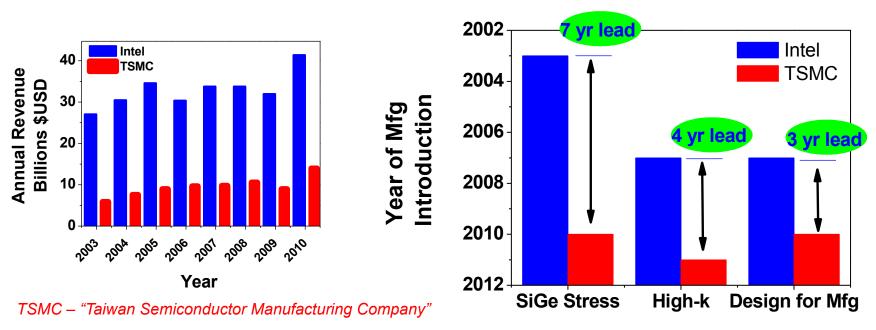
- U.S. Section 1705 of the 2005 Energy Policy Act
 - \$15.6B in loans (<u>\$10.5B for solar</u>), but ~\$1B in 2010
- China China Development Bank (CDB)

\$30B in 2010 loans

10 November 2011

Loan Value (Billion \$'s) U.S. 1706 Program 6 Chinese Development Bank 2 0 Nextera JA Solar Cogentrix Prologis Solyndra Trina I 366 Suntech Agua Caliente Sempra Mesquite Solarreserve Yingli Solar Abengoa Solar Abound Solar Brightsource Energy First Solar Fotowatio Solopower Sunpower 2010 Current Portfolio (all years)

Is there another way to maintain/grow U.S. PV market share?


- Government Loan Guarantees are not enough
- Need Multiple support structures
 - Capital costs
 - Bankability (finance)
 - Strong/talented work force
 - Proximity to innovation
- Loan Guarantees address first item
- Is there another <u>complimentary</u> route for U.S. PV market share growth?

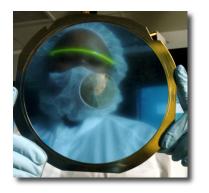
Can technical innovation drive U.S. market share?

Question: Why has Intel has led IC industry for 19 years?

<u>Answer</u>: 3-7 years Transistor technology lead – 50-100% pricing power.

"Transistor Design" Advantage

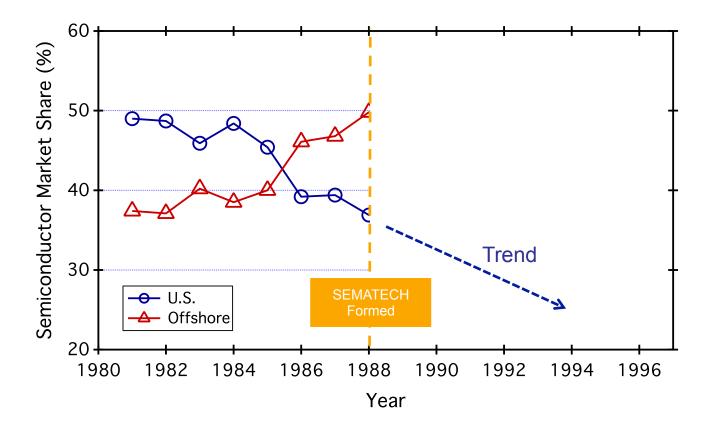
- SEMATECH Led Industry to ALD HfO₂ as High-k Intel adopted novel integration
- IMPACT: Intel's competitive edge results in ~ \$100B revenue from high-k HfO₂



My experience - A snapshot of the LED industry

- In 2000, there were many U.S. LED companies
- Common price of blue LED chip \$0.20 \$0.30
- Two years later price was \$0.05 \$0.10

- <u>Cause</u>: Despite rapid market growth, Asian manufacturing (i.e. supply) grew faster.
- <u>Result</u>: Only handful of major LED U.S. manufacturers remain.
- <u>Common Denominator</u>: All invested in technical innovation, allowing them to stay ahead of commodity curve.

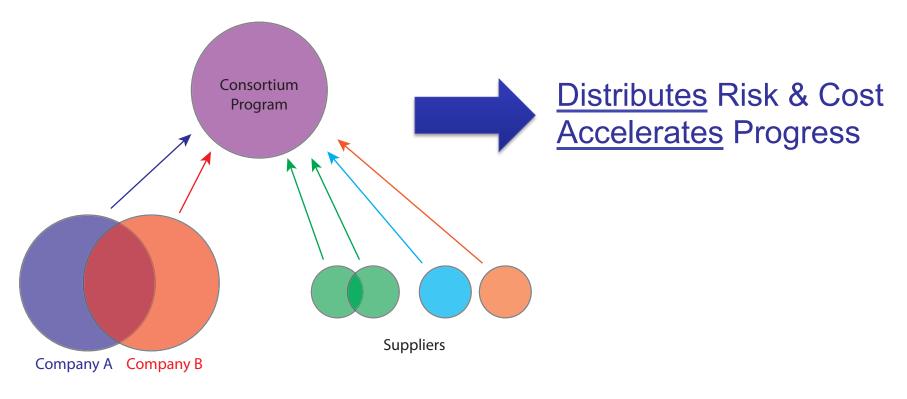


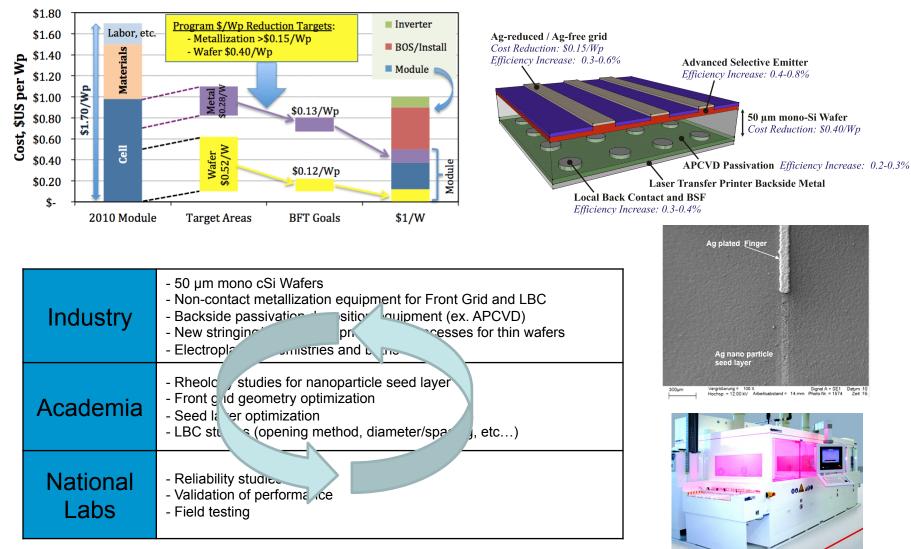
Some History from Semiconductor Industry

"The most significant finding of the Task Force is that U.S. *technology leadership* in semiconductor manufacturing is rapidly eroding and that this has serious implications for the nation's economy and immediate and predictable consequences for the Defense Department."

- Defense Science Board Task Force on "Semiconductor Dependency" - **February 1987**

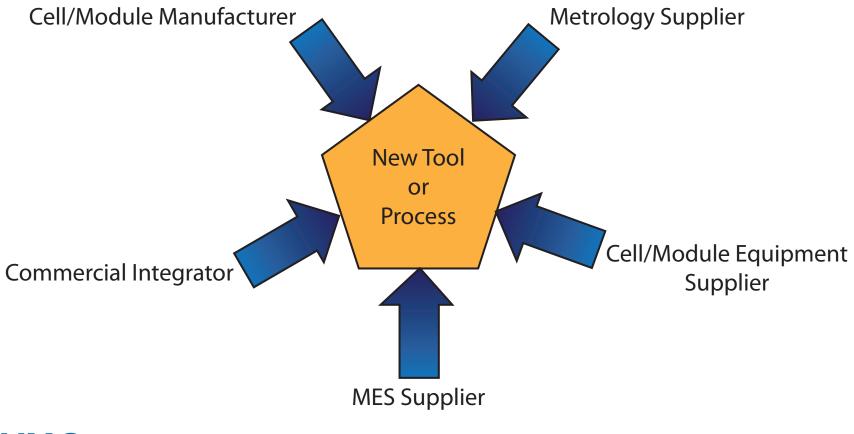
U.S. Photovoltaic Manufacturing Consortium (PVMC)


- DOE decided it needed a similar SEMATECH model for the PV Industry
- Led by SEMATECH in partnership with CNSE (College of Nanoscale Science and Engineering) and UCF (University of Central Florida)
- Overall investment of ~\$300M over 5 years from DOE and matching funds
- Initial focus on CIGS and cSi technology and manufacturing solutions


Key: Establishing <u>Collaborative</u> Consortiums

- PV Industry is historically fragmented
- How do you get consortium members even direct competitors – to work together?

Example Program: 50µm SE cSi Cell



LIP System

What is a β-Site?

Example Project: Integration of inline carrier lifetime mapping after P-diffusion, communicating with MES using SEMI PV 02 Standard

Initial PVMC cSi Program Areas

1. In-line/Off-line Metrology

Primary Goals

- Identify critical industry needs in metrology and rank
- Develop projects to demonstrate new cSi metrology technologies
- Transition new metrology technologies into pilot and manufacturing lines

Current 5-Yr Program Area Goal (revision expected by WG)

- >1,100 wf/hr in-line tool, reducing yield loss such that cost of insertion is offset completely

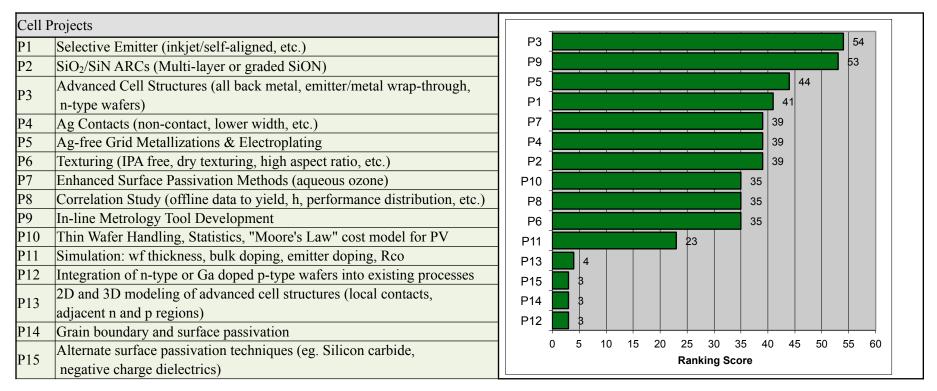
2. New Feedstock/Wafering Methodologies

Primary Goals

- Identify necessary feedstock/wafering targets for \$/W
- Establish cSi feedstock/wafering programs to accelerate transition of new technologies into mainstream manufacturing
- Provide and foster process, test, and demonstration activities to validate new technologies and identify technical barriers

Current 5-Yr Program Area Goal (revision expected by WG)

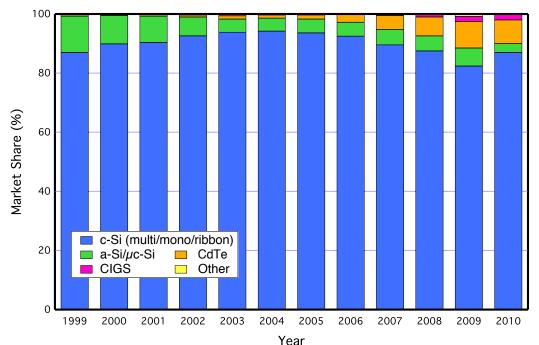
– Demonstrate silicon usage efficiency < 3g/W and cSi wafer cost reduction of >50% to below \$0.25/W.


These two program areas are currently supported in FL through \$14.3M of DOE and industry/partner matching funding

So...How are projects identified?

Projects driven by identified areas of need

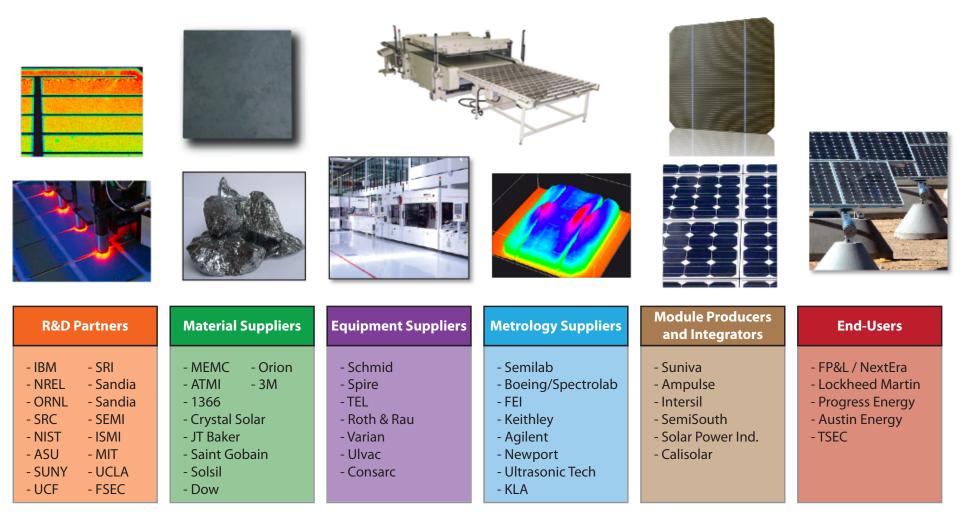
• Consortium members identify program area projects (working groups)



- Identical paretos for feedstock/wafering, modules, and manufacturing productivity.
- Program area ranking allows prioritization of projects and selection of asset allocation

So....What is the Unique Opportunity for Florida ???

- Currently, Florida is one of only 2 states running the first U.S. PV manufacturing consortium
- Florida houses the cSi arm of the PVMC a conversion technology that has maintained 80% market share for over a decade.



We have the potential to grow into something much larger....

Supply Chain Strength in the U.S.

PVMC-FL can build from *existing* U.S. leadership in several areas of the cSi PV supply chain – smaller barrier for growth and job creation

Must Expand Programs to Include the Diverse Supply Chain

What the U.S. cSi Industry Needs

The challenge

The PVMC solution

•	Industry alignment			Roadmap and standards	
•	Lack of infrastructure			Collaborate to fund and create it	
•	Lack of place to work		1	Advanced manufacturing development facility	
•	Metrology, tes	nd reliability	-	Develop, model, and share capabilities	
•	Manufacturing	o <mark>st – CIGS and cSi</mark>		Improved methods = reduced cost	
•	Balance of sys commercializa development	m, technology n, workforce	÷	Support to the industry	
1	Cost of PV en	y to consumer	ľ	Consortium = shared knowledge and resources and reduced cost of manufacturing = reduced cost to consumer	

PVMC cSi Manufacturing Development Facility is Essential

Expansion of PVMC-FL – Phase II

Establish Next-gen RD&C Manufacturing Facility

- 100,000 ft² site already available in Palm Bay, FL
- Next-gen cSi wafer-to-module *manufacturing*-scale lines for Consortium Projects
- Critical value-added element of PVMC for industry, houses consortium and member company projects.

Expansion of PVMC-FL – Phase II

Establish Next-Gen RD&C Manufacturing Facility

- 30 MW Cell and Module Manufacturing Line for Consortium Projects
- Advanced and Next-gen tools sets

Establish PV Commercialization Support Structure

Support transfers into manufacturing, provide incubation and start-up support

Develop Training Workforce Development Programs

- College, university, MDF, and member company programs

National cSi Roadmap and Standards

 Identify industry drivers, establish Executive Steering Committee/Working Groups

Expansion of Consortium Programs (Next Slide)

PVMC-FL – Expansion Opportunity

 Build from existing PVMC-FL to expand program areas and increase member company value.

	Cell	Selective Emitter (inkjet/self-aligned, etc.)	
		Advanced Cell Structures (all back metal, emitter/metal wrap-through, n-type wafers)	
		Ag-free Grid Metallizations & Electroplating	
		SiO2/SiN ARCs (Multi-layer or graded SiON)	
	Module	New Encapsulation Materials	
		Optimized cell connectivity in module	
		Smart Modules (integrated self-diagnostics, power electronics)	
		Easy Install Designs (weight, time)	
		Better Stringing/Tabbing Schemes	
	Feedstock \ Wafering	Develop Incoming Wafer Specifications and In-line Metrology	
		Evaluate Siemens Process Alternatives	
		Lifetime Evolution - Correlate w/ Process History	
	Manuf. Productivity	Equipment Standardization (software, communication)	
		Establish SPC and APC Systems for Improved Yield and Reliability	
		Industry Benchmarking to Establish Manufacturing Best Practices	
	Other	Roadmap and Standards	
Cross-cutting		PV Commercialization Support Structure / Incubation	
		PV Workforce Development	
L		Test and Certification	

Benefits to Florida

- Establish Florida as cSi Manufacturing Hub of the U.S.
- Brings manufacturing technical challenges to University researchers
- Establishes a magnet for industry, bringing companies to the Florida doorstep

"The SEMATECH Effect"

Value of Long Term Advanced Technology Partnerships

SEMATECH and New York

- Home to International SEMATECH HQ, the manufacturing arm of SEMATECH
- Attracted more than \$3.2 billion dollars in capital investment for AMD microchip plant
- Created nearly 500 high-tech, high-wage immediately
- Supporting more than 500 companies across the state as key anchor of Albany Nanotech Initiative

U.S. scaled estimates – more that 3.1 million permanent jobs

Economic Impact Study

SEMATECH and Texas

- Played a critical role in national security initiative
- economy
- Attracted more than \$12 billion dollars in capital investment
- Created more than 80,000 high-tech, high-wage job: Texas
- Leader in government technology & economic development policy and investment

Semiconductor R&D has a multiplier effect of five (highest of all industries) resulting in an additional 400,000 ancillary jobs

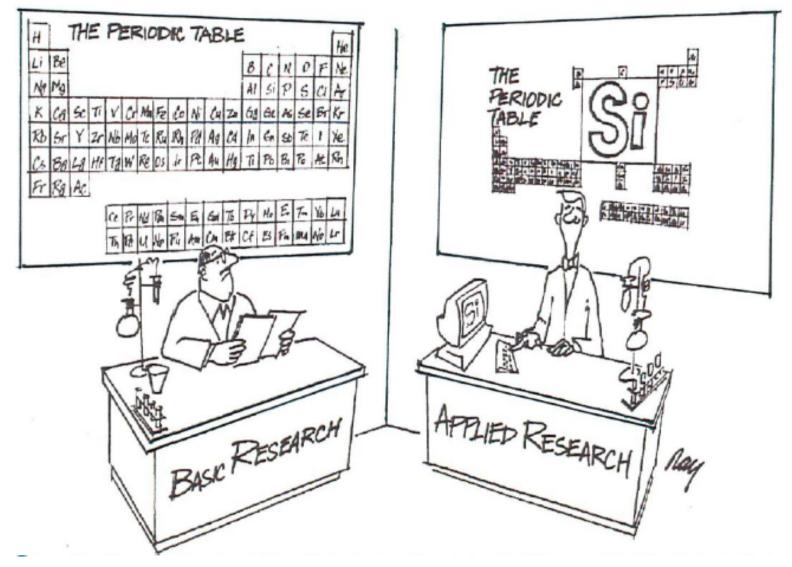
U.S. Scaled Estimates

Based on U.S. capturing same share of global • Key driver of the launch of Texas as a leading high- market as Texas captured in U.S. market, annual economic impacts of:

- \$482.8 billion in expenditures
- \$235.4 billion in gross domestic product
- \$141.8 billion in personal income
- \$50.3 billion in supported retail sales
- More than 3.1 million permanent jobs

10 November 2011

"[SEMATECH North is] the most exciting development since the construction of the Erie Canal."


New York Governor George Pataki SEMATECH North ribbon cutting, 2003

[SEMATECH and the **AMRC**] will advance the technologies that will help drive our state's economy for the next 50 years.

Texas Governor **Rick Perry** AMRC Launch

A little humor to end with...

Thank you for your attention !!!

Photovoltaic Industry Overview

- Why is solar energy and PVMC important?
 - Quality of life/environment most abundant renewable energy source
 - Plentiful energy for the planet while preserving natural resources/ecosystem
 - Potential scale/availability of solar energy
 - Potential uses of solar PV technology
 - Economic market potential, contribution to economic growth, job creation
 - Solar energy will soon develop into one of the world's largest industries generating billions of dollars of revenue, and creating millions of high paying jobs
 - National opportunity for US leadership in technology innovation and manufacturing
 - The clean energy race is well underway energy technologies not only need to be invented in America, but also manufactured in America
- What are the challenges for the solar market?
 - Levellized Cost of Electricity (LCOE), <u>¢/kWh</u>
 - System <u>cost</u>, system <u>efficiency</u>, system <u>reliability</u>
 - Business challenges
 - Bankability. etc
 - National/Regional challenges
 - Funding needed to establish the foundation and catalyst
 - Weak and declining manufacturing market share
 - Industry alignment

