

High Performance Existing Homes Partnerships and Research

Janet McIlvaine Research Analyst, Florida Solar Energy Center A Research Institute of the University of Central Florida

What is Building America?

- U.S. Department of Energy Program
- 15 Research Teams Nationwide
- FSEC Leads Building America Partnership for Improved Residential Construction

U.S. DEPARTMENT OF

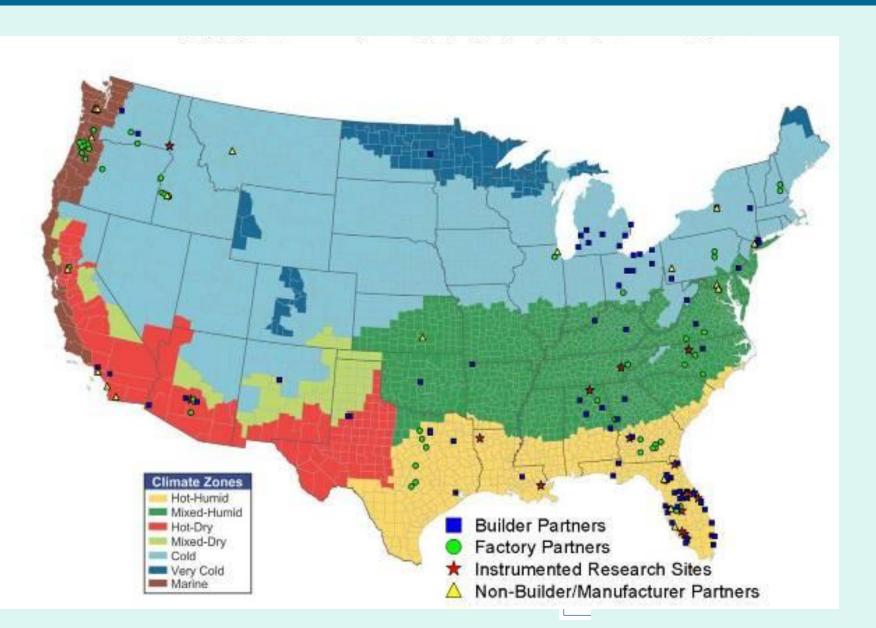
Energy Efficiency & Renewable Energy

Public-Private Research Initiative

What is Building America?

- Cost Shared Research
 - Home Builder partners pay for construction costs

U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy

- Researchers provide technical assistance
- Goal: Cost Effective High performance houses
- Progressively higher efficiency goals
- Needed equipment, components, and materials

What is Building America?

ENERGY Energy Efficiency & Renewable Energy

High Performance Existing Homes Partners and Research

- What savings can be achieved?
 - Off-the-shelf technology
 - Conventional construction
 - Existing labor pool
 - Best opportunities in typical existing homes
- What are the challenges?
 - Availability of products
 - Implementation barriers
 - Training needs
- Affordable housing focus

U.S. DEPARTMENT OF

ENERG

Energy Efficiency &

Renewable Energy

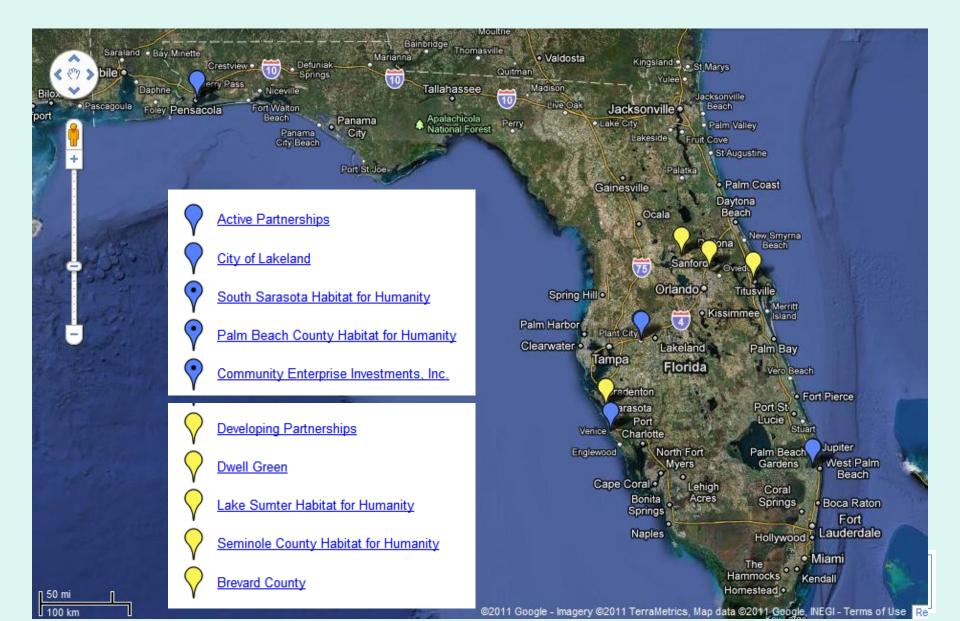
High Performance Existing Homes Partners and Research

ENERGY Energy Efficiency & Renewable Energy

- Technical and Cost Goals
 - 30-50% improvement in post-renovation house
 - Unoccupied homes standardized HERS Index method
 - Occupied homes measured + utility bills
 - First year positive cash flow
 - Collect cost data
 - Enhance IAQ, Durability, and Comfort

Existing Homes Partnerships

U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy

Building

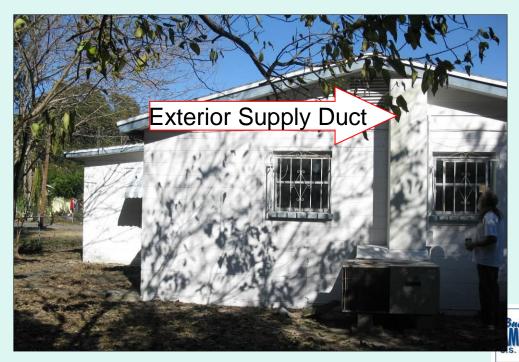
New Existing Homes Partners

Partnership

- Local governments, non-profit housing providers, remodeling contractors
- Foreclosed homes under HUD Neighborhood Stabilization Program
 - Neglected homes
 - Extensive renovation
 - Sold after renovation as affordable housing
 - Total cost of renovation set by program guidelines
- Test-in, Test-out, HERS Index, Analysis of Energy Options, QA During Rehab

Typical Pre-Retrofit Issues

- Neglected coils
- Leaky return and supply plenums
- Poorly sealed AHU closets
- Restricted return air flow
- High levels of duct leakage
- Missing & compressed attic insulation
- Large wall penetrations
- Windows unable to fully close
- Porches and garages converted to living space


U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

Pre-Retrofit Example

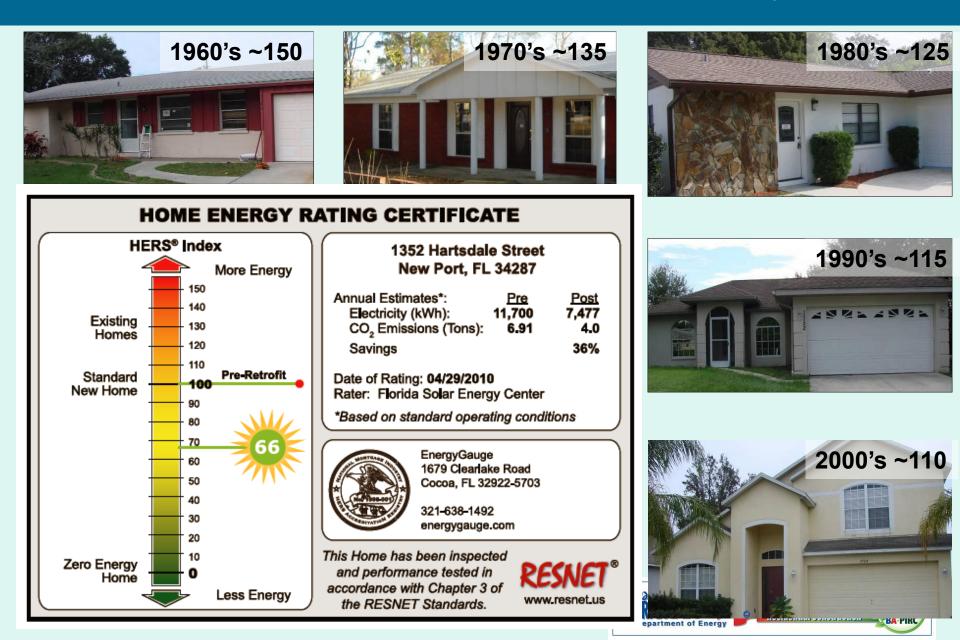
- 1250 ft², 1960 3 bed/2 bath
- Central Florida
- Slab on grade, block construction
- Test-In HERS Index 178
- Target HERS Index 89
- Projected 50% Improvement
 - Attic insulation, window and HVAC replacement, appliances, & lighting



Pre-Retrofit Example

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

- 1373 ft², 2003 3 bed/2 bath
- South Florida
- Slab on grade, frame construction
- Test-In HERS Index 97
- Target HERS Index 63
- Projected 35% Improvement
 - HVAC, HP water heater, window film, appliances, lighting



Typical Existing Homes HERS Indices

U.S. DEPARTMENT OF

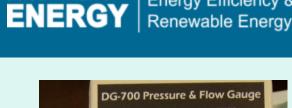
Energy Efficiency & Renewable Energy

Typical Elements of Deep Retrofit Improvement Package

- ENERGY Energy Efficiency & Renewable Energy
- Typically concrete block, slab on grade, single story homes
- Mechanical system
 - Adequate return air pathways
 - Passive outside air ventilation
 - If not replacing complete system service and duct sealing
 - If replacing
 - Properly sized SEER 15 heat pump (straight cool in south florida)
 - Sealed and tested ducts
- Water heating systems
 - Solar, tankless gas, or heat pump water heaters

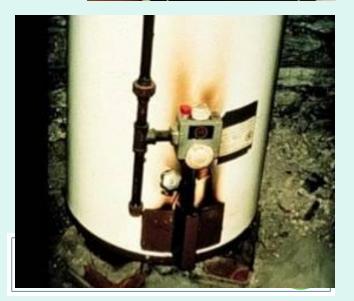
Lighting and Appliances

- Energy star appliances, fans, and windows
 - High performance window film, if not replacing
- Compact fluorescent light bulbs


Insulation and Air Sealing

- R-38 attic insulation
- Air sealing measures
- Roof & exterior finish: light or white finishes
- Thermal bypass and other inspections in gut rehab

Post-Retrofit Issues: Pressure Differences


- The house CAN get worse
 - Quality assurance is CRITICAL
- Pressure dynamics can cause potentially deadly conditions and severe moisture damage
- Training for remodeling and heating/cooling labor is CRITICAL
- Drivers
 - Inadequate return air pathways
 - Duct leakage
 - Uncontrolled air flow

U.S. DEPARTMENT OF

Energy Efficiency &

Post-Retrofit Issues: Mechanical Equipment Installation

- Small, Poorly Sealed AHU Closets & Leaky Return and Supply Plenums
 - Pressure Issues
 - Longer Run Times
- Over Sized Equipment
 - Pressure Issues
 - Shorter Run Times
 - Humidity

Unsealed joints in return plenum

Holes connecting AHU closet to attic

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

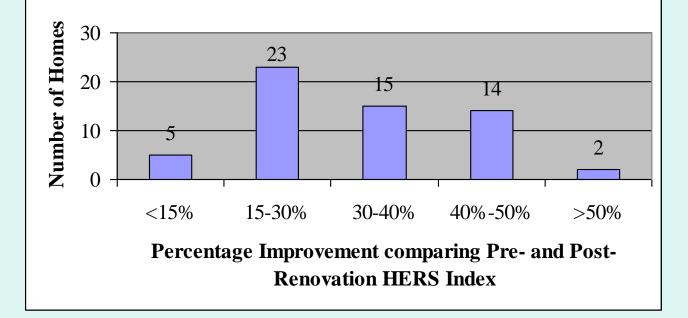
Post-Retrofit Issues: Ducts & Ceiling Insulation

- Unsealed/Poorly Sealed Ducts
- Ducts Buried by Insulation

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Insulation pulled from attic, through supply register during depressurization test


Blocked Attic Ventilation in Low-Pitched Roofs

Results

Energy Efficiency Improvement Levels in 59 Homes Existing Homes

- What savings can be achieved?
 - Goal 30-50+% savings = 21 Houses
 - 15-30% = 23 Houses

Retrofit Case Study: Sarasota Home

Energy Efficiency & Renewable Energy

Retrofit Case Study: Sarasota Home

Energy Efficiency & Renewable Energy

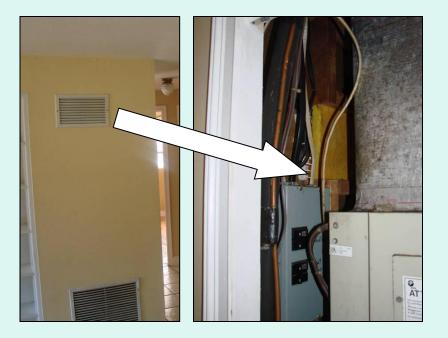
- Concrete block, slab on grade
- Built in 1967, 1190 ft2, 2 bedroom, 2 bath

New HVAC System

ENERGY Energy Efficiency & Renewable Energy

Pre-retrofit

SEER 8.7, HSPF 6.75 Heat Pump with better than typical duct leakage (qn,out = 0.05)



SEER 15, HSPF 8.8 Heat Pump with sealed ducts (qn,out = 0.02)

AHU Closet Sealing, Return Plenum Sealing, Drywall Repair, New Windows

Pre-retrofit

LR side of AHU closet

Sparse ceiling in AHU closet, connected to attic & LR

Post-retrofit

Closet gutted, drywalled; new return plenum & platform constructed

Energy Efficiency & Renewable Energy

AHU Closet Sealing, Return Plenum Sealing, Drywall Repair, New

Pre-retrofit

Windows

Post-retrofit

LR side of AHU closet

Mysterious return plenum

Central return plenum constructed with duct board & sealed with mastic at edges, seams, & joints.

AHU Closet Sealing, Return Plenum Sealing, Drywall Repair, New Windows

Plumbing access panel & miscellaneous drywall penetrations were repaired

AHU Closet Sealing, Return Plenum Sealing, Drywall Repair, New

Windows

Pre-retrofit

Note angle of window in 'closed' position

Post-retrofit

Major Infiltration Reduction

New Windows Exceed EnergyStar® U-Value = 0.47, SHGC = 0.37

Ceiling Insulation

Post-retrofit

Insulated to R - 30

Pre-retrofit

Note: Image from alternate house

EnergyStar® Appliances & CFLs

Pre-retrofit

Post-retrofit

"White/Light" Shingles & Exterior **ENERGY** Energy Efficiency & Renewable Energy

Improvement Package Summary ENERGY

Energy Efficiency & Renewable Energy

- Cooling and Heating System
 - SEER 15, HSPF 8.8 Heat Pump, sealed ducts
- Envelope
 - Replace single pane metal windows with Energy Star rated
 - Infiltration reduction (repair holes in drywall, AHU closet)
 - Ceiling insulation increased to R-30
 - "White/Light" Exterior Paint
- Appliances & Lighting:
 - Energy Star® refrigerator & dishwasher
 - Fluorescent lighting (CFLs) in 13 fixtures
- Total Cost of Features impacting energy efficiency = \$19,939
- Incremental Cost for Higher Efficiency choices = \$3,958

Cash Flow Analysis

Energy Efficiency & Renewable Energy

Goal: Positive First Year Cash Flow

	Total First Cost	Annual Cost (7%, 30 yr mortgage) & Energy Savings
Actual Cost for Efficiency Related Features ¹	\$19,939	
Incremental Cost for Higher Efficiency Choices ²	\$3,958	\$324
Estimated Annual Energy Cost Savings ³		\$567
Net 1 st year cash flow to owner		\$254

¹ Cost for bath fixtures, interior doors and paint, cabinets, etc are excluded.

² For example, choosing a SEER 15 heat pump instead of a SEER 13 unit.

³ Based on \$0.13/kWh.

In summary

- Deep energy improvement is possible
 - Cost effectiveness based on preliminary cash flow analysis
 - Off the shelf technology
 - Current labor pool
 - Must be done thoughtfully
 - Awareness of risks
 - Quality control practices
 - Carbon monoxide poisoning
 - Moisture failure and other durability issues
- Next step implement a standardize package of improvements with new partners

Retrofitting 3% of the Homes per Year

(3% of the existing 6.2 million existing single-family homes = 186,000)

